ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА Д 219.001.04 НА БАЗЕ ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ», ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ, ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК АТТЕСТВЦИОННОЕ ДЕЛО №

решение диссертационного совета от 7 декабря 2017 г. № 26

О присуждении Левченко Андрею Сергеевичу, гражданину Российской Федерации, ученой степени кандидата технических наук.

Диссертация «Разработка методов повышения эффективности передающих и приёмных средств цифровых радиосистем передачи данных» по специальности 05.12.04 — Радиотехника, в том числе системы и устройства телевидения, принята к защите 05.10.2017 (протокол №22) диссертационным советом Д 219.001.04, созданным на базе ордена Трудового Красного Знамени федерального государственного бюджетного образовательного учреждения высшего образования «Московский технический университет связи и информатики» (МТУСИ), Федеральное агентство связи, 111024, Москва, ул. Авиамоторная, д. 8а, приказ о создании совета - № 244/нк от 03.03.2016.

Соискатель Левченко Андрей Сергеевич, 1990 года рождения, в 2013 году окончил магистратуру федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский университет «Московский энергетический институт» с присуждением степени магистра по направлению «210400 Радиотехника» В 2017 аспирантуру ФГБОУ BO «Национальный году окончил исследовательский университет «Московский энергетический институт» по научной специальности 05.12.04 – Радиотехника, в том числе системы устройства телевидения. Работает в должности начальника сектора акционерном обществе «Российские космические системы», ведомственная принадлежность - Роскосмос.

Диссертация выполнена в ФГБОУ ВО «Национальный исследовательский университет «Московский энергетический институт», ведомственная принадлежность – Министерство образования и науки РФ.

Научный руководитель — Дворкович Александр Викторович, доктор технических наук, член-корреспондент РАН, директор физтех-школы радиотехники и компьютерных технологий федерального государственного автономного образовательного учреждения высшего образования «Московский физико-технический институт (государственный университет)».

Официальные оппоненты:

- 1. Горгадзе Светлана Феликсовна доктор технических наук, профессор, профессор кафедры «Радиооборудования и схемотехники» федерального государственного бюджетного образовательного учреждения высшего образования «Московский технический университет связи и информатики»,
- 2. Важенин Николай Афанасьевич кандидат технических наук, доцент, доцент кафедры 408 «Инфокоммуникации» федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт»,

дали положительные отзывы на диссертацию.

Ведущая организация - закрытое акционерное общество «Московский научно-исследовательский телевизионный институт» (ЗАО «МНИТИ»), г. Москва, в своем положительном заключении (отзыве), рассмотренном и одобренном на заседании научно-технического совета ЗАО «МНИТИ» 9 ноября 2017 года (протокол №20/17), подписанном главным экспертом ЗАО «МНИТИ», д.т.н., проф. Кукком К.И и утвержденном заместителем генерального директора ЗАО «МНИТИ», к.т.н. Барсуковым А.Г, указала, что многие выводы, полученные автором в ходе исследований, представляют интерес не только для систем РАВИС или DRM, но и для других радиосистем с использованием сигналов СОГОМ и при других значениях

полосы канала (в том числе, с полосой менее 100 кГц), а сама работа Левченко А.С. является законченной научно- квалификационной работой, которая отвечает критериям Положения о присуждении ученых степеней кандидата наук, а её автор заслуживает присуждения ученой степени кандидата технических наук.

Соискатель имеет **8 опубликованных работ** по теме диссертации, из них в рецензируемых периодических научных изданиях, входящих в перечень ВАК при Минобрнауки РФ, 3 работы, две из которых выполнены без соавторов. Одна работа опубликована в иностранном журнале, входящем в БД Scopus и WoS, также выполнена без соавторов. Наиболее значительные работы:

- Левченко А.С. Демодулятор СОFDM сигнала с мультипликативными шумами // Радиотехнические и телекоммуникационные системы. 2016. №1. С. 36-43.
- 2) Левченко А.С. Расчет логарифма отношения правдоподобия OFDMсигнала при использовании техники поворота созвездия // Цифровая обработка сигналов. – 2017. – №1. – С. 56-60.
- 3) Левченко А.С., Митягин К.С. Модифицированный метод резервирования тона для OFDM сигнала с малым числом несущих // Журнал Радиоэлектроники [электронный журнал] 2017. Выпуск 6 URL: http://jre.cplire.ru/jre/jun17/9/text.pdf.
- 4) Levchenko A.S. PAPR reduction scheme for RAVIS // Embedded Computing (MECO), 6th Mediterranean Conference on Embedded Computing MECO. 2017. C. 364-367.

В вышеуказанных публикациях изложены все основные результаты диссертации. Недостоверные сведения об опубликованных соискателем ученой степени работах, в которых изложены основные научные результаты диссертации, отсутствуют.

На диссертацию и автореферат поступило **10 отзывов от следующих организаций**: ФГБОУ ВО «Владимирский государственный университет

имени Александра Григорьевича и Николая Григорьевича Столетовых»; ФГУП «НИИР»; НОУ ВО «Московский технологический университет» (МИРЭА); ФГБОУ ВО «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича»; ФГБОУ ВО «Вятский ФГБОУ BO государственный университет»; «Национальный «ТЕИМ» ФГБОУ BO «МГТУ исследовательский университет BO им. Н.Э. Баумана»; ФГБОУ «Рязанский государственный радиотехнический Акционерное общество «Научноуниверситет»; исследовательский институт телевидения»; ФГБОУ ВО «Воронежский государственный университет». Все отзывы положительные.

Замечания, поступившие на автореферат, представлены следующем обобщенном виде: 1) показано, но не поясняется, почему с увеличением процента резервированных поднесущих при предложенном автором двухступенчатом методе снижения пик-фактора эффективность метода ухудшается; 2) не указано, для какой модели многолучевого канала определен энергетический выигрыш, указанный в 3 положении, выносимом на защиту; 3) не указано, каким образом и на основании какого объема статистических данных определяются гамма-процентные уровни пикфактора; 4) из реферата не понятно, в чем заключается способ расчета логарифма отношения правдоподобия при демодуляции сигнала, который позволяет получить энергетический выигрыш; 5) положения, выносимые на защиту и заключение «перегружены» большим количеством конкретных цифр, что не облегчает, а только затрудняет их понимание; 6) обзорная глава излишне объемная; 7) не указан энергетический выигрыш от использования предложенного способа расчета логарифма отношения правдоподобия при скоростях кода выше ½; 8) отсутствие описания математической модели, с использованием которой получена оценка эффективности предложенных формул для расчета логарифма отношения правдоподобия; 9) отсутствие указаний о способе расчета дисперсии ошибки оценки состояния канала, необходимой для вычисления логарифма отношения правдоподобия предложенным способом; 10) отсутствие экспериментальной оценки эффективности 11) разработанного демодулятора; отсутствуют экспериментальные результаты измерения пик-фактора после применения предложенных методов; 12) в автореферате не представлены критерии, на основании которых соискателем был определен двухступенчатый способ снижения значения пик-фактора. Поэтому не ясно, является ли полученное решение оптимальным или же его следует рассматривать как частный случай; 13) из автореферата не ясна сущность предложенной соискателем модификации метода активного расширения созвездия; 14) не приведена сравнительная оценка вычислительной сложности предложенных методов снижения пик-фактора относительно существующих аналогов.

Выбор официальных оппонентов и ведущей организации обосновывается следующим образом:

- 1) Доктор технических наук, профессор Горгадзе Светлана Феликсовна является крупным специалистом в области цифровых систем передачи данных, основанных на CDMA и OFDM. Её научные интересы распространяются также на проблему высокого пик-фактора OFDM-сигнала, что соответствует направленности диссертационного исследования А.С. Левченко;
- 2) Кандидат технических наук, доцент Важенин Николай Афанасьевич является специалистом в области радиотехнических систем передачи данных. В сфере научных интересов Н.А. Важенина находятся проблема воздействия аддитивного белого гауссовского шума и случайных импульсных помех на помехоустойчивость передачи данных, проблема оценки отношения сигналшум на приёмной стороне, а также вопросы, связанные с реализацией кодов с низкой плотностью проверок на четность;
- 3) ЗАО «МНИТИ» является одним из ведущих предприятий телевизионной отрасли в России, специализирующимся на разработке и создании телевизионной техники. С момента основания по настоящее время МНИТИ является головной организацией России в области приёмной телевизионной

техники, а также ведущей научной организацией Минпромторга России в области цифрового телевидения.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

- 1) Проведен **сравнительный анализ** существующих методов снижения пик-фактора (SLM, TR, ACE) и оценена их количественная эффективность на примере системы РАВИС;
- 2) Разработан двухступенчатый метод снижения пик-фактора для системы РАВИС, позволяющий обеспечить низкий пик-фактор одновременно при малом и большом числе поднесущих;
- 3) Разработана модификация метода резервирования тона, позволяющая увеличить его эффективность при узкой полосе сигнала за счет использования внеполосного излучения без выхода за пределы допустимой спектральной маски;
- 4) Разработан способ расчета логарифма отношения правдоподобия, позволяющий снизить вероятность битовой ошибки при приёме OFDM сигнала в многолучевом канале распространения за счет учета мультипликативной составляющей помехи;
- 5) Сформулирован **способ** демодуляции при приёме OFDM сигнала в многолучевом канале распространения при использовании техники поворота сигнального созвездия.

Теоретическая значимость исследования обоснована тем, что предложена математическая модель принятого многолучевого сигнала, учитывающая ошибку оценки состояния канала, которая, при принятых допущения, соответствующих процессам, происходящим при приёме такого сигнала, приводит к простому с точки зрения описания и вычисления выражению для расчета логарифма отношения правдоподобия, более точное, чем классическая модель с только аддитивным шумом.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что предложенные методы снижения пик-

фактора имеют более высокую эффективность при малом числе несущих, что делает их крайне полезными в таких системах вещания как DRM+, РАВИС и узкополосных системах связи, основанных на ортогональном частотном мультиплексировании; за счет существенного снижения пик-фактора данные методы позволяют снизить требования к линейности усилителей мощности, а также повысить КПД усилителя мощности либо снизить коэффициент ошибок модуляции при неизменной выходной мощности; предложенные способы расчета логарифма отношения правдоподобия позволяют расширить **30HY** вещания неизменной мощности при передающих устройств. Использование и внедрение результатов диссертации подтверждено двумя актами внедрения, приложенными к диссертации. В рамках работ ООО «НПФ «САД-КОМ» над оборудованием для системы цифрового наземного вещания РАВИС использованы предложенный автором комбинированный метод 9 снижения пик-фактора с помощью ограниченных спектральной внеполосных тонов и модифицированного метода активного расширения созвездия, а также метод демодуляции сигнала, позволяющий снизить вероятность битовой ошибки при приёме OFDM сигнала в многолучевом канале распространения за счет учёта мультипликативной составляющей ошибки. Основные результаты диссертационной работы внедрены в учебный процесс кафедры мультимедийных технологий и телекоммуникаций физтех-школы радиотехники И компьютерных технологий МФТИ в рамках программы дисциплины «Цифровые системы вещания».

Оценка достоверности результатов исследования выявила, что диссертационной работы обоснованы результаты применением математических моделей, отражающих все существенные свойства исследуемых объектов; выбором объёмов моделирования, достаточных для получения достоверных результатов; согласованностью результатов моделирования с результатами известных экспериментов; тем, что теория построена на известных и соответствующих технической реализации приемных и передающих средств положениях и развивает методологические подходы известных ученых, занимающихся рассматриваемыми проблемами.

Личный вклад соискателя состоит в получении всех основных научных результатов диссертации; апробации результатов исследования на шести научно-технических конференциях и семинарах, в том числе за рубежом; публикации основных результатов в трех статьях в рецензируемых научных изданиях, входящих в перечень ВАК и одной публикации в иностранном журнале, входящем в БД Scopus и WoS.

На заседании 7 декабря 2017 года диссертационный совет принял решение присудить Левченко А.С. ученую степень кандидата технических наук по специальности 05.12.04 — Радиотехника, в том числе системы и устройства телевидения.

При проведении тайного голосования диссертационный совет в количестве 17 человек, (из них 7 докторов наук по профилю защищаемой диссертации), участвовавших в заседании, из 21 человека, входящих в состав совета, проголосовали: за присуждение учёной степени - 17 против - 0 недействительных бюллетеней – 0.

Председатель диссертационного совета

Д 219.001.04

Ученый секретарь

диссертационного совета

Д 219.001.04

Терешонок Максим Валерьевич

ажемов Артём Сергеевич

«07» декабря 2017 г.