Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования «МОСКОВСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СВЯЗИ И ИНФОРМАТИКИ»

На правах рукописи

Ву Ши Дао

ОБНАРУЖЕНИЕ И СИНХРОНИЗАЦИЯ СЛАБЫХ ПО МОЩНОСТИ ПЕРИОДИЧЕСКИХ ШУМОПОДОБНЫХ СИГНАЛОВ

Специальность 2.2.13 –

«Радиотехника, в том числе системы и устройства телевидения»

Диссертация на соискание ученой степени

кандидата технических наук

Научный руководитель: д.т.н., проф. Горгадзе Светлана Феликсовна

оглавление

ВВЕДЕНИЕ
1. ОБНАРУЖЕНИЕ СЛОЖНЫХ СИГНАЛОВ И АЛГОРИТМ ВЕКТОРНО-
МАТРИЧНОГО ПЕРЕМНОЖЕНИЯ 17
1.1. Обнаружение-различение шумоподобных сложных сигналов 17
1.2. Векторно-матричное перемножение при обнаружении шумоподобных СлС25
1.3. Быстрые спектральные преобразования в базисе Уолша-Адамара и
обнаружение сложных сигналов
1.3.1. Функции Радемахера и система Уолша-Адамара 28
1.3.2. Факторизация матрицы Уолша-Адамара и быстрое преобразование
Адамара 30
1.3.3. Быстрое преобразование в усеченном базисе Уолша-Адамара 33
Выводы по разделу 1 36
2. СИНХРОНИЗАЦИЯ М-ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ПСП ГОЛДА НА
ОСНОВЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ АДАМАРА
2.1. Построение матриц-циркулянтов МП на основе мультипликативных групп
поля Галуа
2.2. Преобразование матрицы-циркулянта МП к матрице, состоящей из функций
Уолша 44
2.3. Синхронизация МП 49
2.4. Алгоритм и структурная схема устройства синхронизации
М-последовательностей 54
2.5. Построение матрицы-циркулянта ПСП Голда 59
2.6. Преобразование матрицы-циркулянта ПСП Голда к аналогам
функций Радемахера 62
2.7. Быстрый алгоритм синхронизации ПСП Голда 64
2.8. Устройство ускоренной синхронизации ПСП Голда 67
Выводы по разделу 2 69

3. ВЗАИМОДЕЙСТВИЕ УСТРОЙСТВ ОБНАРУЖЕНИЯ СлС И СЛЕЖЕНИЯ ЗА
ИХ ЧАСТОТАМИ И ЗАДЕРЖКАМИ ПО ВРЕМЕНИ (НА ПРИМЕРЕ
СПУТНИКОВОЙ РАДИОСИСТЕМЫ)
3.1. Общие принципы построения канала синхронизации в спутниковой
радиосистеме
3.2. Обобщенная структурная схема канала синхронизации слабых
шумоподобных сигналов74
3.3. Обнаружение (поиск) шумоподобных СлС 77
3.4. УОСлС с цифровыми устройствами вычисления свертки комплексных
огибающих опорных и принимаемых СлС 80
3.5. УОСлС с аналоговыми согласованными фильтрами на ПАВ 86
3.6. Повышение точности оценки параметров СлС в УВКОСлС
3.7. Многоэтапный параллельно-последовательный поиск частоты и задержки
СлС по времени
3.8. Характеристики эффективности КС
3.9. Длительность времени поиска и синхронизации параметров СлС
3.10. Пример приближенного расчета характеристик поиска и синхронизации
СлС в спутниковой радиосистеме 101
Выводы по разделу 3 106
4. АНАЛИЗ ХАРАКТЕРИСТИК ДВУМЕРНЫХ АВТОКОРРЕЛЯЦИОННЫХ
ФУНКЦИЙ ШУМОПОДОБНЫХ СЛОЖНЫХ СИГНАЛОВ И
ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ИХ ОБНАРУЖЕНИЯ 108
4.1. Статистические характеристики двумерных автокорреляционных
функций шумоподобных сигналов 108
4.1.1. Методика расчета ДКФ
4.1.2. Статистические характеристики боковых пиков ДКФ СлС
4.2. Вероятностные характеристики обнаружения и правильной оценки
параметров шумоподобных СлС 124
Выводы по разделу 4
ЗАКЛЮЧЕНИЕ

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 136
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ А. Программный код алгоритма построения матрицы-циркулянта
МП и кодов Голда на основе мультипликативных групп расширенных полей
Галуа на языке Матлаб 146
ПРИЛОЖЕНИЕ Б. Программный код разработанной программы для вычисления
и исследования ДАКФ ПСП на языке Матлаб 164
ПРИЛОЖЕНИЕ В. Акт о внедрении результатов диссертационной работы 191
ПРИЛОЖЕНИЕ Г. Свидетельство о государственной регистрации программы для
ЭВМ
ПРИЛОЖЕНИЕ Д. Свидетельство о государственной регистрации программы для
ЭВМ

введение

Актуальность темы исследования

Задача совместного обнаружения и оценки параметров несущих частот и задержек по времени слабого по мощности шумоподобного сложного сигнала (СлС), нескольких его копий, рассогласованных по частоте и задержке по времени, либо разных по структуре шумоподобных сигналов, является актуальной для целого ряда радиосистем, поскольку на основе ее решения может производиться синхронизация по времени и частоте в каналах передачи информации [1-5], позиционирования в системах радионавигации [6-9], суммирования сигналов при их многолучевом распространении или излучении разнесенными ретрансляторами [8, 10-13], выявления всех наземных станций, использующих спутниковую группировку, с целью контроля частотного ресурса [13, 14] и т.д.

Обнаружение (поиск) слабых шумоподобных обычно сигналов производится при длительном накоплении их энергии в приемнике [11, 6], поскольку отношение сигнал/шум по мощности на его входе может составлять (-10...-40) дБ, причем при неизвестных частотах и задержках по времени принимаемых СлС первоначальное ее накопление обычно производится с помощью набора корреляторов (Кор) или согласованных фильтров (СФ) [15,16], на выходах которых формируются двумерные корреляционные функции (ДКФ) [13, 15, 17] принимаемых СлС или их фрагментов. В дальнейшем слабыми будем считать СлС, обеспечивающие отношение сигнала/шум по мощности на входе приемника в вышеуказанном диапазоне значений. Но необходимо подчеркнуть, что имеется существенное ограничение на длительность времени накопления энергии СлС с использованием Кор или СФ в случае необходимости обработки принимаемых СлС с большими базами при значительной ширине области их неопределенности по частоте. Основной причиной этого ограничения являются значительные технические сложности изготовления вышеупомянутых устройств. В результате длительность времени обнаружения слабых по мощности СлС

может составлять несколько десятков секунд или даже минут при последовательной перестройке устройств их обнаружения по частоте [6, 10, 11].

Во многих случаях Кор или СФ рассматриваются только как устройства, использующиеся с целью повышения достоверности работы последующего последетекторного энергетического обнаружителя СлС [18,19], в котором накапливается энергия необходимого количества (до нескольких десятков или даже сотен) фрагментов СлС [1,4]. Данное обстоятельство приводит К существенному снижению точности оценки параметров этих сигналов В устройстве их обнаружения, а также эффективности различения ИХ рассогласованных копий, определяющейся в основном размерами проекции(ий) ДКФ основного пика(ов) СлС на плоскость частота-время, то есть характеристиками первого блока накопления энергии СлС, включающего набор Кор или СФ. Последующий энергетический накопитель позволит ЛИШЬ обеспечить точность оценки параметров СлС, соответствующую размерам этой проекции, с требующейся достоверностью [12, 20].

Повышение эффективности устройств обнаружения СлС связывают с развитием цифровых алгоритмов их обработки [2,3,21,22], которые сводятся к выполнению операции дискретной свертки псевдослучайной последовательности (ПСП), на основе которой он сформирован, или, в конечном итоге – операции векторно-матричного перемножения. Ограничение на длину ПСП, свертка которой может быть выполнена в таком устройстве, связано только с высокой вычислительной сложностью соответствующего алгоритма, поскольку проблема нестабильности тактовых генераторов ПСП решается при повторной дискретизации входного СлС со сдвигом по времени на половину длительности его элементарного импульса [23], а нестабильность его несущей частоты и ее доплеровский сдвиг приводят лишь к необходимости многократных повторных вычислений дискретной свертки ПСП [14,24].

Более точная оценка параметров СлС для работы квазикогерентного приемника может быть произведена в устройствах слежения за изменением этих параметров в системах фазовой автоподстройки частоты (ФАПЧ) и устройствах

автоматической подстройки времени (АПВ) [10,20,22,25,26]. То есть обнаружение СлС может использоваться с целью вывода устройств слежения за параметрами уже обнаруженных сигналов на рабочие участки дискриминационных характеристик этих устройств слежения [20].

Цель работы: Повысить эффективность цифровых алгоритмов обнаружения слабых по мощности шумоподобных СлС, а также анализ совместной работы соответствующих устройств с петлевыми схемами слежения за изменением параметров сигналов при заданной точности их конечной оценки при многоэтапной параллельно-последовательной процедуре обнаружения и синхронизации, а также выработка единого критерия качества синхронизации для радиосистемы.

Научная задача: Комплексное рассмотрение и оптимизация процедуры совместного обнаружения и оценки параметров совокупностей слабых по мощности шумоподобных сигналов по критериям длительности времени правильной оценки их несущих частот и задержек по времени с заранее заданными погрешностями и вероятностями.

Задача, сформулированная выше, включает совокупность подзадач, решение которых составляет содержание данной работы:

1. Обоснование выбора М-подобных ПСП для формирования СлС, приводящихся к специальным ортогональным функциям, в системах которых можно построить быстрые алгоритмы векторно-матричного перемножения на основе быстрого преобразования Уолша-Адамара;

2. Исследование вариантов построения матриц-циркулянтов Мполедовательностей (МП) на основе мультипликативных групп расширенного поля Галуа по модулю неприводимого примитивного полинома, а также вариантов приведения этих матриц к полной или усеченной матрице Адамара с целью разработки ускоренных алгоритмов синхронизации МП при обработке шумоподобных сложных сигналов;

3. Исследование способа построения матриц-циркулянтов ПСП Голда и взаимосвязи их структуры с изоморфными мультипликативными группами полей

Галуа, а также способов приведения матриц-циркулянтов этих ПСП к функциям Уолша с целью разработки быстрого способа синхронизации ПСП Голда при обработке шумоподобных СлС;

4. Рассмотрение и исследование эффективности многоэтапной параллельнопоследовательной процедуры оценки параметров частоты и задержки по времени совокупности шумоподобных СлС при совместной работе устройств их ускоренного обнаружения и слежения за их параметрами на основе двухпетлевых схем;

5. Разработка методики расчета ДКФ СлС на участке частотно-временной плоскости, соответствующей области их определения, при учете возможности формирования СлС на основе ПСП разных типов, а также исследование параметров функций распределения боковых пиков ДКФ, являющихся случайными величинами при неизвестных частоте и задержке СлС по времени; анализ вероятностных характеристик обнаружения совокупности СлС, рассогласованных по частоте и задержке по времени.

Методы исследования. Применительно к задачам 1-3 исследования базировались на применении теории полей Галуа и их мультипликативных групп, а также методах быстрых спектральных преобразований в системах полных и усеченных ортогональных дискретных функций Уолша-Адамара. Так же применялись методы компьютерного моделирования при построении матрицциркулянтов М-подобных последовательностей. При решении задач 4 и 5 привлечением использовались аналитические исследования с методов статистической теории шумоподобных СлС. радиотехники И а также компьютерное моделирование.

Предмет исследования: цифровые алгоритмы ускоренного векторноматричного перемножения применительно к задаче обнаружения совокупности шумоподобных сигналов; многоэтапная параллельно-последовательная процедура обнаружения и синхронизации шумоподобных сигналов с использованием цифровых устройств синхронизации ПСП и аналоговых петлевых схем.

Объект исследования: алгоритмы и устройства обнаружения и синхронизации слабых по мощности шумоподобных сигналов.

Степень разработанности.

Значительные успехи в области использования быстрых спектральных преобразований в базисе функций Виленкина-Крестенсона и, в частности, Уолша-Адамара при обработке дискретных сигналов были достигнуты в работах Лосева В.В., Дворникова В.Д., Be'eny Y., Leung K., Snyders J., Li P., Смольянинова В.М., Назарова Л.Е., Финка Л.М. [9,7,15,16,27]. В [9] впервые предложены групповые дискретные мультипликативные сигналы, выявлена их связь с групповыми кодами и показано, что в основе оптимального правила их распознавания лежит спектральный анализ, при реализации которого можно использовать быстрые преобразования. В работах [7,15,27,28] спектральные развиты методы использования этих преобразований в теории помехоустойчивого кодирования. Применительно к задаче декодирования р-ичных кодов максимальной длины использование быстрых спектральных преобразований в дискретном базисе функций Виленкина-Крестенсона рассматривалось В работе [12]. а непосредственно для синхронизации ПСП - в работах [4,9]. Так же в [4] указывается на взаимосвязь задач поиска (синхронизации) СлС при их обработке в приемнике и декодирования блоковых кодов, построенных на основе циклических сдвигов их слов.

При быстром декодировании кода на основе быстрых спектральных преобразований необходимо знать способ преобразования его слов к дискретным функциям Виленкина-Крестенсона, или, при использовании двоичных кодов, – к функциям Уолша [29]. В случае решения задачи синхронизации кода любой его циклический сдвиг должен преобразовываться к этим функциям [7,9]. Но в [7,9,13] не выявлено многообразие вариантов преобразования циклических сдвигов МП к дискретным функциями Уолша, вызванное как разнообразием мультипликативных групп расширенного поля Галуа, так и использованием их циклических сдвигов при таком приведении. Знание о таком многообразии делает алгоритм синхронизации МП более гибким, и позволяет снизить его вычислительную сложность в определенных ситуациях, на которые указывается в данной диссертации. Кроме того, при решении задачи синхронизации ПСП с большими периодами повторения важное значение приобретает способ выявления соответствия номеров строк матрицы Уолша-Адамара и начальных блоков циклических сдвигов МП, то есть в матричной интерпретации данной задачи - строкам матрицы-циркулянта МП, которая может быть построена разными способами, что не рассматривается в работах вышеперечисленных авторов.

Проблема быстрой синхронизации шумоподобных СлС, формируемых на основе ПСП Голда [8, 30-34], используемых в настоящее время во многих радиосистемах, включая спутниковые радионавигационные, не решена. В работах Михайлова В.Ю. и Мазепы Р.Б., посвященных данной проблеме [33,34], рассматриваются ПСП Голда, формируемые при помощи двоичного подкласса последовательностей Гордона-Милса-Велча (ГМВ-последовательности) [7]. которые не существуют при $N = 2^m - 1$, где m = 5,7,11,13,17,... Учитывая, что отсутствуют ПСП Голда для m = 8,12,16, можно сделать вывод, что метод синхронизации ПСП Голда, предложенный в этих работах, может быть применим к ПСП лишь четырех длин, используемым в практических приложениях в 511, 1023, 16283, 32567. Основной проблемой данного настоящее время подхода, используемого также и в более ранних работах [7,9], но лишь ГМВ-последовательностям, является увеличение уровня применительно к боковых пиков нормированных периодических автокорреляционных функций (ПАКФ) [4] коротких ПСП, к которым преобразуется исходная более длинная ПСП, по отношению к неизменному по величине центральному пику нормированной ПАКФ.

В работах Лосева В.В., Дворникова В.Д., посвященных разработке методов поиска (синхронизации) дискретных сигналов на основе быстрых методов декодирования кодов, рассматриваются не отдельные ПСП Голда, а коды Голда, образованные на основе двух предпочтительных МП, когда слова кода представляют собой разные по структуре ПСП [30,31]. Очевидно, что решенная

задача не имеет прямого отношения к проблеме синхронизации СлС по времени, поскольку необходимо рассматривать блоковый код, образованный циклическими сдвигами одной и той же ПСП Голда. Но, очевидно, в этих работах не удалось установить взаимосвязь между структурой матрицы-циркулянта ПСП Голда и изоморфными мультипликативными группами полей Галуа [35,36], на основе которых построены предпочтительные МП, образующие его. Это объясняется тем, что в [7,9], а также в работе [37], указывается лишь на одну структуру исходных матриц-циркулянтов МП, не позволяющую выявить такую взаимосвязь.

Практическая значимость.

Предложенный подход к разработке устройств обнаружения и синхронизации слабых по мощности периодических шумоподобных сложных сигналов позволил [38,39]:

1. Использовать алгоритмы быстрых спектральных преобразований непосредственно в аппаратуре обработки шумоподобных СлС при вычислении их двумерных корреляционных функций, что при возможности преобразования отсчетов исходных СлС к полному базису функций Уолша-Адамара позволяет снизить вычислительную сложность цифровых алгоритмов обнаружения СлС приблизительно в 50...630 раз при длинах используемых ПСП от 511 до 8191, по сравнению с традиционным методом вычислений;

2. В случае, если циклические сдвиги применяемых типов ПСП не приводятся к полной системе Уолша-Адамара, использовать алгоритм их преобразования к неполной ортогональной системе функций Радемахера, что позволяет обеспечить выигрыш по вычислительной сложности алгоритма обработки примерно в 3-8 раз при длинах (периодах) ПСП, указанных в предыдущем пункте, по сравнению с простым векторно-матричным перемножением;

3. Оптимизировать длительность времени обнаружения и синхронизации слабых по мощности СлС при подборе числа этапов многоэтапной параллельнопоследовательной процедуры их поиска, реализуемой с использованием совместно работающих устройств их ускоренного обнаружения и слежения за их параметрами; в диссертации показано, что в спутниковой радиосистеме длительность времени вхождения в синхронизм по слабым шумоподобным СлС в случае совместного использования разработанных цифровых устройств их ускоренного обнаружения и аналоговых петлевых схем слежения за их частотами и задержками по времени можно сократить на практике приблизительно до 0.2 с; в случае использования последовательного корреляционного алгоритма эта длительность времени при таких же исходных условиях будет составлять несколько десятков секунд.

Теоретическая значимость обосновывается новыми результатами, полученными в области использования теории ускоренного декодирования циклических двоичных блоковых кодов максимальной длины, а также циклических кодов, производных от них, на основе быстрого преобразования Уолша-Адамара для синхронизации периодических ПСП [2,3,40,41].

Основные положения, выносимые на защиту.

1. Упорядоченная матрица-циркулянт любой МП длины *N*, в которой каждая последующая строка сдвинута циклически на один символ, по сравнению с предыдущей строкой, может быть сформирована на основе единственной мультипликативной группы расширенного поля Галуа, построенного по модулю неприводимого примитивного полинома, использовавшегося для формирования этой МП; структура данной мультипликативной группы позволяет выявить соответствие номеров строк матрицы функций Уолша, в которую можно преобразовать вышеупомянутую матрицу-циркулянт, и матрицы Уолша-Адамара;

2. Любой циклический сдвиг МП может быть приведен к любой строке матрицы Уолша-Адамара без нулевого символа при их нумерации от нуля в зависимости от выбора первообразного элемента единственной мультипликативной группы расширенного поля Галуа, построенного на основе неприводимого примитивного полинома, использовавшегося при формировании исходной МП; показано, что при заданном первообразном элементе соответствие строк вышеупомянутых матриц является взаимно однозначным;

преобразована 3. Установлено, что любая МΠ быть может К последовательности Радемахера; ПО ee номеру В системе Радемахера блок соответствующей размерности можно определить начальный преобразованной МП;

4. Любая ПСП Голда может быть приведена к любому аналогу функций Радемахера путем перестановки ее элементов по возрастанию значений суммы максимальных мультипликативных групп двух предпочтительных неприводимых примитивных полиномов, на основании которых она построена;

5. Выявленные способы приведения М-подобных последовательностей к строкам матрицы Уолша-Адамара позволяют использовать алгоритм быстрого преобразования Адамара при обнаружении шумоподоных СлС с неизвестными частотами и задержками по времени в случае их формирования на основе вышеупомянутых типов ПСП;

6. Совместное использование наземной станции спутниковой В радиосистемы разработанного цифрового устройства ускоренного обнаружения совокупности периодических СлС и двухпетлевых схем слежения за их частотами и задержками по времени позволяет обеспечить значение длительности времени от начала обнаружения совокупности СлС до вхождения в синхронизм устройств слежения за их частотами и задержками по времени, составляющее не более орбиты долей секунды, спутниковых десятых независимо OT высоты ретрансляторов;

7. Исследование статистических характеристик боковых пиков ДКФ СлС, формируемых на основе МП и ПСП Голда, показало, что их уровень влияет на вероятность правильного обнаружения совокупности СлС, формируемых на основе этих типов ПСП, только при малых отношениях шум/сигнал на входе приемника, меньших 10 (то есть когда шум по мощности превосходит полезный сигнал не более чем в 10 раз); при слабых сигналах, когда требуется накапливать энергию СлС с периодами повторения ПСП, составляющими более 10000, можно не учитывать характеристики боковых пиков вышеупомянутых ДКФ, поскольку основное влияние на вероятность правильного обнаружения СлС в этом случае

оказывает уровень шума на входе приемника (поправка к оценке вероятности правильного обнаружения не превышает 15% в случае учета характеристик боковых пиков ДКФ).

Научная новизна.

1. Показано, что дискретный сигнал, при формировании которого используется М-подобная последовательность, может быть преобразован к любой функции Уолша при перестановке его символов по возрастанию значений элементов мультипликативной группы расширенного поля Галуа, построенного по модулю неприводимого примитивного полинома, использовавшегося при формировании исходной ПСП, или по возрастанию значений некоторой конфигурации таких групп разных полей Галуа; установлено, что на основе вариантов сопровождающих матриц исходного полинома можно построить как минимум четыре мультипликативных группы.

2. Способ преобразования МП или ПСП Уолша на основе выбранной мультипликативной группы расширенного поля Галуа или суммы мультипликативных групп разных полей, а также выбор первообразного элемента группы, с которого начинается перестановка элементов исходной ПСП, позволяет однозначно определить начальный блок преобразованной МП или циклический сдвиг ПСП Голда с использованием быстрого спектрального преобразования Уолша-Адамара.

3. Любая МП или ПСП Голда может быть приведена к любой из меандровых функций Радемахера соответствующей размерности или к ее аналогу; подоптимальный алгоритм идентификации полученной последовательности Радемахера может быть основан на использовании набора цифровых или аналоговых фильтров, число которых равно $log_2(N)$, где N – длина ПСП.

Достоверность полученных результатов подтверждается

- апробацией результатов работы на Международных научных конференциях и публикациями в рецензируемых научных изданиях, относящихся к перечню ВАК;

- соотнесением результатов, полученных на основе теоретических исследований, и результатов компьютерного моделирования.

Апробация результатов. Результаты работы были представлены автором при его личном участии на

- международной научно-технической конференции (МНТК) «Технологии информационного общества» в 2022,2023 и 2024 годах [17,20,22];

- МНТК Синхроинфо-2024 в 2024 году, Выборг [40].

Публикации. Основные результаты диссертации изложены в 11 печатных изданиях [1-3,17,20,22,40,41,42], 2 из которых размещены в журналах, рекомендованных ВАК [1,17]. Получены 2 свидетельства о государственной регистрации программы для ЭВМ [38,39].

Личный вклад состоит в проведении теоретических исследований и разработке программного кода для компьютерного моделирования. Все результаты получены автором самостоятельно.

Объем и структура работы. Диссертация состоит из введения, четырех разделов, заключения, списка сокращений и условных обозначений, списка литературы и приложений. Ее объем составляет 193 страниц с 46 рисунками и 10 таблицами. Список литературы содержит 72 наименования.

Соответствие паспорту специальности.

Исследования, проведенные автором диссертации, соответствуют пунктам паспорта научной специальности 2.2.13 – Радиотехника, в том числе системы и устройства телевидения:

 п. 1. "Исследование процессов и явлений в радиотехнике, позволяющих повысить эффективность радиотехнических устройств и систем";

п. 3. "Разработка и исследование радиотехнических устройств и систем,
 обеспечивающих улучшение характеристик точности, быстродействия и помехоустойчивости.";

– п. 5. "Разработка и исследование алгоритмов, включая цифровые, обработки сигналов и информации в радиотехнических устройствах и системах

различного назначения, в том числе синтез и оптимизация алгоритмов обработки";

– п. 6. "Разработка и исследование методов и алгоритмов обработки сигналов и информации в радиотехнических устройствах и системах различного назначения, включая системы телевидения и передачи информации, при наличии помех с целью повышения помехоустойчивости";

– п. 10. "Разработка и исследование методов и устройств передачи, приема, обработки, отображения, регистрации, хранения и распространения информации, включая беспроводные, космические, эфирные, кабельные и мобильные системы передачи информации".

1. ОБНАРУЖЕНИЕ СЛОЖНЫХ СИГНАЛОВ И АЛГОРИТМ ВЕКТОРНО-МАТРИЧНОГО ПЕРЕМНОЖЕНИЯ

1.1. Обнаружение-различение шумоподобных сложных сигналов

Пусть на входе приемника присутствует *P* аддитивных копий одного и того же СлС, сформированного путем двоичной фазовой манипуляции (ФМн) его несущей частоты; данный СлС на длительности периода его повторения описывается как

$$s(t) = \sum_{i=0}^{N-1} d_i S_0(t - iT_3) \cos(2\pi f_0 t), \qquad (1.1)$$

где N – период повторения двоичной ПСП, $d_i \in \{-1,1\}$ – ее элементарные символы, i = 0,1,...,(N-1) – номер символа, $S_0(t)$ – функция формы элементарного импульса СлС длительностью T_3, f_0 – его несущая частота. Часто рассматривают прямоугольную форму элементарных импульсов СлС, когда

$$S_0(t) = \begin{cases} 1 & \text{при} \quad t \leq T_{\Im} \\ 0 & \text{при} \quad t > T_{\Im} \end{cases}$$

В общем случае данные копии отличаются друг от друга неизвестными задержками по времени, значениями частот их несущих колебаний и начальными фазами колебаний этих частот. Соответственно, при P = 1 СлС на входе приемника описывается как $s(t - t_1 - \tau_1, f_1 - \Delta f_1, \Delta \varphi_1)$, где τ_1 и Δf_1 неизвестные относительно медленные смещения задержки по времени и несущей частоты данного СлС относительно постоянных и известных их значений t_1 и f_1 , а $\Delta \varphi_1$ – случайный сдвиг начальной фазы колебания несущей частоты СлС относительно условно нулевого сдвига этой фазы.

В соответствии с критерием максимального правдоподобия совместное обнаружения и оценка параметров СлС при P = 1, то есть оценка его смещения по времени $\hat{\tau_1}$, частоте Δf_1 и фазе частоты $\Delta \hat{\varphi_1}$ относительно t_1 , f_1 и нулевого фазового сдвига на фоне аддитивного белого гауссовского шума соответствует алгоритму [12,43-45]:

$$\widehat{\tau_1}, \widehat{\Delta f_1}, \widehat{\Delta \varphi_1} = \underset{\tau, \Delta f, \Delta \varphi}{\operatorname{argmax}} (\operatorname{Re}[\dot{Z}(\tau, \Delta f, \Delta \varphi) + \xi]), \tag{1.2}$$

где *ξ* – аддитивная шумовая составляющая на входе решающего устройства (РУ),

$$\dot{Z}(\tau,\Delta f,\Delta\varphi) = e^{j\,\Delta\varphi}\dot{\chi}(\tau,\Delta f),\tag{1.3}$$

$$\dot{\chi}(\tau,\Delta f) = \frac{1}{E_{1T_{\text{HAK}}}} \int_{0}^{T_{\text{HAK}}} \dot{S}(t) \dot{S}^{*}(t-\tau) e^{j2\pi\Delta f t} dt -$$
(1.4)

комплексная ДКФ СлС [7,41,43], $\dot{S}(t)$ – его комплексная огибающая [43], $E_{1T_{\text{нак}}}$ – значение энергии СлС, накопленной в течение времени $T_{\text{нак}}$. Таким образом,

$$\widehat{\tau_1}, \widehat{\Delta f_1}, \widehat{\Delta \varphi_1} = \underset{\tau, \Delta f, \Delta \varphi}{\operatorname{argmax}} (Re[e^{j\Delta \varphi} \dot{\chi}(\tau, \Delta f, \Delta \varphi)].$$
(1.5)

Далее учитывают, что оценка $\Delta \varphi$ является мало информативной и усложняет процесс оценки частоты и задержки по времени, в результате чего в (1.2) вместо действительной части функции $\dot{Z}(\tau, \Delta f, \Delta \varphi) + \xi$ как правило рассматривают ее модуль, то есть $|\dot{Z}(\tau, \Delta f, \Delta \varphi) + \xi| = |\dot{Z}(\tau, \Delta f, \Delta \varphi)| + \xi_1$, где помеховая составляющая ξ_1 распределена по закону Рэлея-Райса. Тогда (1.5) можно переписать в виде:

$$\widehat{\tau_1}, \widehat{\Delta f_1} = \underset{\tau_1, \Delta f_1}{\operatorname{argmax}} (|\dot{\chi}(\tau, \Delta f, \Delta \varphi)| + \xi_1).$$
(1.6)

Таким образом, схема оптимального обнаружителя СлС с неизвестной частотой, задержкой по времени и фазой частоты соответствует рисунку 1.1.

Рисунок 1.1 – Иллюстрация алгоритма работы оптимального обнаружителя СлС с неизвестной частотой и задержкой по времени.

На выходах фильтров нижней частоты (ФНЧ) квадратурных каналов обнаружителя СлС выделяют функции $Re[\dot{S}(t)e^{j(2\pi\Delta ft+\Delta \varphi)}] =$

 $\cos\Delta\varphi Re[\dot{S}(t)e^{j2\pi\Delta ft}]$ и $Im[\dot{S}(t)e^{j(2\pi\Delta ft+\Delta\varphi)}] = \sin\Delta\varphi Im[\dot{S}(t)e^{j2\pi\Delta ft}]$, где Δf и $\Delta\varphi$ – значения неизвестных разностей несущей частоты принимаемого СлС и опорной частоты квадратурного приемника f_1 , а также их начальных фаз соответственно. Затем согласно (1.4) отдельно вычисляются две свертки каждой из них с $\dot{S}^*(t)$, которая в данном случае является действительной функцией.

Результаты, представленные ниже, опубликованы данной автором диссертации в [20,22,38,42]. Вид $|\dot{\chi}(\tau, \Delta f, \Delta \phi)| = |\dot{\chi}(\tau, \Delta f)|$ при формировании СлС на основе МП с $N_{9} = 1023$ в случае прямоугольной формы $S_{0}(t)$ показан на рисунке 1.2. При этом диапазоны изменения параметоров τ и Δf соответствуют ширине интервала области неопределенности принимаемого СлС по времени T_s и частоте F соответствено, где T_s – длительность (период повторения) сигнала; F ширина области неопределенности по частоте. Внутри каждого из этих интервалов существуют неразличимые значения любого из параметров с точки зрения его оценки. Число различимых дискретных значений параметра τ определяется как $n_{\rm B} = T_s / \Delta \tau$, а число различимых значений параметра Δf – как $n_{\rm y} = F / \Delta f_{\rm H}$, где $\Delta \tau, \Delta f_{\rm H}$ – периоды дискретизации СлС по времени и частоте. Выбранные периоды дискретизации в два раза больше, чем периоды, соответствующие Котельникова. При $\tau = zT_{a}$ (z =теореме ЭТОМ $-n_{\rm B}, ..., -1, 0, 1..., n_{\rm B})$ – сдвиг ПСП опорного СлС относительно ПСП принимаемого СлС, $\Delta f = \frac{\gamma}{T_s} (\gamma = -n_y, ..., -1, 0, 1..., n_y) - сдвиг несущей частоты$ относительно частоты принимаемого СлС. Если опорного СлС ПСП принимаемого СлС сдвигается влево относительно ПСП опорного СлС, то z принимает отрицательные значения, в противном случае – положительные значения. Соответственно возможны сдвиги несущей частоты принимаемого СлС в сторону значений, меньших или больших частоты опорного СлС. Начало системы координат на этом рисунке соответствует совпадающим значениям времени задержки и частоты принимаемого СлС и опорного СлС.

Таким образом, на рисунке 1.2 приводится дискретная функция $|\dot{\chi}(zT_3, \frac{\gamma}{T_s})|$ от безразмерных *z* и γ , значения которой соединены непрерывными линиями,

соответствующими виду функции $|\dot{\chi}(\tau, \Delta f)|$ между соседними точками дискретной функции, соответствующими ей. Так же на этом рисунке приведены сечения ДКФ по оси времени $|\dot{\chi}(zT_3, 0)|$ и по оси частоты $|\dot{\chi}(0, \frac{\gamma}{T_s})|$. Первые нулевые значения $|\dot{\chi}(zT_3, 0)|$ достигаются при $z = \pm 1$, в результате чего ширина сечения основного пика ДКФ по времени сотавляет $2T_3 = 2/f_T$, откуда следует, что точность оценки времени задержки СлС увеличивается при увеличении ширины его спектра, где $f_T = 1/T_3$ – тактовая частота СлС. Вместе с тем, как следует из (1.4), ширина сечения ДКФ оси частот определяется значениями $\gamma = \pm 1$, при которых $|\dot{\chi}(0, \frac{\gamma}{T_s})| = 0$, поэтому ширина ДКФ по оси частот составит $2/T_s$, причем $T_s = T_{\text{нак}} = T_3N$, где N – число элементарных импульсов СлС, энергия которых накапливается в приемнике.

Рисунок 1.2 – Типичный вид модуля ДКФ СлС при $N_{9} = 1023$ и его сечений

по времени и частоте.

Таким образом, с увеличением N растет и точность оценки частоты СлС. Обычно считается, что если $\Delta f_1 > 1/3T_{\text{нак}}$, то вероятность обнаружения СлС мала, поскольку в этом случае уровень полезного сигнала на входе РУ, соответствующего значению ДКФ, существенно меньше его максимально возможного значения [12,17]. То есть, при больших значениях Δf_1 длительное накопление энергии СлС в устройстве свертки не имеет смысла, но при относительно малых $T_{\text{нак}}$ накопленной энергии может быть недостаточно для обнаружения СлС в требующейся достоверностью. Поэтому необходима перестройка опорной частоты квадратурного приемника с шагом $1/3T_{\text{нак}}$ в области неопределенности принимаемого СлС по частоте с повторным вычислением ДКФ.

Таким образом, обнаружение СлС предполагает и одновременное измерение параметров его частоты и времени задержки с точностью, соответствующей размерам сечения основного пика его ДКФ [40]. То есть два соседних значения любого из параметров можно считать неразличимыми, если разность между ними меньше ширины сечения центрального пика ДКФ. В результате можно считать, что любой из рассматриваемых параметров СлС является дискретным. При дискретизации СлС значения $\Delta \tau$ и Δf_{μ} должны выбираться в соответствии с теоремой Котельникова, то есть при выборе интервалов дискретизации сигнала по времени и частоте в соответствии с размерами основного пика ДКФ, они будут в два раза больше интервала дискретизации сигнала, рекомендуемого этой теоремой. Тогда, если ширина спектра СлС равна ΔF_s , а длительность времени накопления его энергии равна периоду его повторения, то $\Delta \tau \approx 1/\Delta F_s$, а $\Delta f_{\mu} \approx 1/T_s$. Если учесть, что для $\Delta F_s \approx$ 1/Т,, то можно оценить общее число анализируемых интервалов области неопределенности по частоте и задержке $n_{\rm B, y}$ (СлС) = $n_{\rm B} n_{\rm y}$.

На рисунке 1.3 приводится частотно-временная плоскость, на которой область неопределенности параметров СлС – времени задержки и частоты – ограничена прямоугольником.

Область неопределенности параметров разделена сеткой на ячейки в виде прямоугольников со сторонами размерами $\Delta \tau$ и Δf_{μ} . Общее число ячеек равно $n_{\rm B, 4}$ (СлС).

Рисунок 1.3 – Область неопределенности параметров СлС.

Площадь каждой из них приблизительно равна площади центрального пика ДКФ СлС, то есть в каждой ячейке может расположиться только один центральный пик ДКФ, поэтому сетка определяет границы между распознаваемыми значениями параметров, а сами параметры могут принимать любые значения из их общего числа $n_{\rm B}$ и $n_{\rm q}$. Таким образом, дискретные значения параметров СлС можно пронумеровать и обозначить их как τ_n , где $n = 1, ..., n_{\rm B}$ и Δf_k , где $k = 1, ..., n_{\rm q}$. На рисунке 1.3 выделена заштрихованная ячейка, соответствующая значениям параметров принимаемого СлС.

Таким образом, структурная схема устройства, реализующего максимально правдоподобную оценку частоты и задержки по времени СлС может быть представлена в виде набора квадратурных корреляторов, каждый из которых описывается схемой, приведенной на рисунке 1.1. Обобщенная схема соответствующего оптимального обнаружителя показана на рисунке 1.4. Выходным сигналом корреляторов после вычисления модулей их откликов будет модуль ДКФ СлС $|\dot{\chi}(\tau, \Delta f)|$ (с точностью до множителя, соответствующего энергии сигнала и аддитивной шумовой составляющей), значения которой для

дискретных τ_n и Δf_k появятся одновременно на выходе корреляторов. Затем используется решающее устройство (РУ), представляющее собой селектор максимума. В последнем сравниваются значения откликов корреляторов и выбирается максимальный из них. В качестве максимально правдоподобной оценки частоты и задержки сигнала по времени выдаются параметры опорного сигнала коррелятора с наибольшим выходным откликом.

В случае если частота сигнала известна и равна $f_0(\Delta f = 0)$, в схеме на рисунке 1.4 используется только $2n_{\rm B}$ корреляторов для оценки задержки сигнала по времени, но все они могут быть заменены единственным СФ. Последний представляет собой линейное устройство с импульсным откликом в виде зеркальной копии полезного сигнала, то есть h(t) = s(T - t), где T длительность сигнала. СФ максимизирует выходное отношение сигнал/шум при воздействии аддитивного белого гауссовского шума, но в данном контексте важным является его свойство воспроизводить автокорреляционную функцию сигнала в реальном масштабе времени [10].

Рисунок 1.4 – Устройство максимально правдоподобной оценки частоты и времени задержки на основе набора корреляторов, φ и φ_x – неизвестные сдвиги по фазе несущих частот принимаемого и опорного СлС.

То есть отклик СФ в реальном масштабе времени с коэффициентом $\frac{1}{2}$ повторяет действительную часть автокорреляционной функции входного сигнала, сдвинутую по времени на длительность сигнала *T*, но на частоте f_0 . Данное обстоятельство позволяет использовать для максимально правдоподобной оценки задержки сигнала по времени устройство, схема которого приведена на рисунке 1.5, где входной сигнал s(t) вначале обрабатывается СФ, выходной сигнал которого поступает на детектор огибающей (ДО), в последнем блоке, представляющем собой РУ, фиксируется момент времени $t_{C\Phi}$, когда сигнал на выходе ДО достигнет максимального значения, причем оценка задержки сигнала по времени $\hat{t} = t_{C\Phi} - T$. При этом значения $|Re\{\dot{\chi}(t - T, 0)\}|$ на входе РУ появляются последовательно.

Рисунок 1.5 – Устройство максимально правдоподобной оценки времени задержки на основе СФ.

СФ на практике может быть реализован как аналоговое устройство. Довольно часто для построения СФ фазоманипулированных СлС используют устройства на поверхностных акустических волнах (ПАВ) [5, 46], но из-за ограничений, связанных с технологией их изготовления (ограниченные размеры подложки) в них могут обрабатываться СлС с базой, составляющей не более 512 или 1024 при последовательном расположении двух подложек.

При обнаружении *P* аддитивных копий одного и того же СлС, рассогласованных по частоте и задержке по времени, следует выбрать значение $T_{\text{нак}}$ таким, чтобы в пределах любой полосы частот $[f_1 - 1/3T_{\text{нак}}, f_1 + 1/3T_{\text{нак}}],$ $[f_2 - 1/3T_{\text{нак}}, f_2 + 1/3T_{\text{нак}}], ..., [f_P - 1/3T_{\text{нак}}, f_P + 1/3T_{\text{нак}}]$ имелась только одна копия принимаемого СлС с неизвестной задержкой по времени, любо совокупность СлС с одинаковыми несущими частотами и разными задержками по времени. В этом случае нелинейное преобразование при вычислении $|\dot{\chi}(0, \Delta f)|$ не приведет к появлению существенных взаимных помех между копиями одного времени нелинейному СлС, поскольку каждый И того же В момент СлС, преобразованию подвергается лишь один И взаимные помехи минимизируются при выборе значения Т_{нак} [1, 45]. На рисунке 1.6 приводится вид ДКФ группового СлС при P = 3.

Рисунок 1.6 – Модуль ДКФ трех копий СлС, сдвинутых друг относительно друга по частоте и задержке по времени и сформированных на основе ПСП Голда с $N_9 = 511$.

1.2. Векторно-матричное перемножение при обнаружении шумоподобных СлС

Цифровая обработка СлС в устройстве их обнаружения предполагает выделение его комплексной огибающей с последующей ее дискретизацией по времени с тактовой частотой $f_T = 1/2T_3$, то есть на каждый элементарный импульс СлС приходится два отсчета, сдвинутых друг относительно друга по времени на $T_3/2$. Но две группы отсчетов сигнала, каждая из которых получена при дискретизации по времени через интервалы длительностью T_3 , должны обрабатываться отдельно – каждая в своем цифровом устройстве, а решение об обнаружении СлС должно приниматься по максимальному отклику двух устройств.

Необходимо учитывать, что удвоенная частота дискретизации сигнала не совсем точно соответствует тактовой частоте принимаемого сигнала, равной $2f_T$, из-за нестабильностей задающих генераторов как на передающей, так и на приемной стороне. Кроме того, на этапе обнаружения СлС его тактовая синхронизация еще не произведена. В результате спустя некоторый промежуток времени обязательно произойдет проскальзывание, то есть два отсчета СлС при его дискретизации через интервал времени T_2 будут приходиться на один и тот же его элементарный импульс, либо один такой импульс будет пропущен. Но благодаря сдвигу отсчетов на T₂/2 проскальзывание никогда не будет происходить на входах двух последующих цифровых устройств обработки СлС одновременно. Тем не менее, длительность времени обработки СлС в этих устройствах не должна превышать длительности времени между двумя соседними проскальзываниями, которое легко оценить, зная нестабильность частот задающих тактовых генераторов на передающей и приемной стороне. Так, если $\frac{\Delta f_T}{f_T} = 10^{-4}$, то легко посчитать, что длительность ПСП, который может обрабатываться в каждом из цифровых устройств не должна превышать приблизительно 5000.

Опуская очевидные промежуточные выкладки и упрощения [6, 10-12], опишем цифровой алгоритм совместного обнаружения и оценки параметров совокупности СлС: с выходов фильтров нижней частоты (ФНЧ) синфазного и квадратурного каналов приемника, приведенного на рисунке 1.1, используются аналого-цифровые преоразователи (АЦП) с целью получения дискретных отсчетов функций $Re[\dot{S}(t)e^{j(2\pi\Delta ft+\Delta \phi)}] = \cos\Delta\phi Re[\dot{S}(t)e^{j2\pi\Delta ft}]$ и $Im[\dot{S}(t)e^{j(2\pi\Delta ft+\Delta\phi)}] = \sin\Delta\phi Im[\dot{S}(t)e^{j2\pi\Delta ft}]$ при частоте дискретизации $f_T = 1/T_3$. В результате формируются дискретные периодические сигналы X_1 и X_2 . После повторной дискретизации с той же тактовой частотой, но со сдвигом по

времени на $T_{3}/2$, получают дискретные сигналы X_{3} , X_{4} [4,42]. Далее необходимо вычислить четыре дискретные свертки, которые в матричной интерпретации описываются как: $\mathbf{\mathfrak{S}}_{\mathfrak{ll}(1,-1)}X_{1N}, \mathbf{\mathfrak{S}}_{\mathfrak{ll}(1,-1)}X_{2N}, \mathbf{\mathfrak{S}}_{\mathfrak{ll}(1,-1)}X_{3N}, \mathbf{\mathfrak{S}}_{\mathfrak{ll}(1,-1)}X_{4N}$, где $\mathbf{\mathfrak{S}}_{\mathfrak{ll}(1,-1)}$ – матрица-циркулянт ПСП, использовавшейся при формировании СлС размерности $N \times N$ в алфавите (1,-1), а X_{1N} , X_{2N} , X_{3N} , X_{4N} – векторы, являющиеся отрезками дискретных функций X_1, X_2, X_3, X_4 длины N соответственно. В РУ принимается решение о числе обнаруженных СлС и сдвигах по времени их ПСП относительно ee условно нулевого циклического сдвига после вычисления $\sqrt{(\mathbf{\mathfrak{I}}_{\mathfrak{l}(1,-1)}X_{1N})^2 + (\mathbf{\mathfrak{I}}_{\mathfrak{l}(1,-1)}X_{2N})^2} \quad \text{и} \quad \sqrt{(\mathbf{\mathfrak{I}}_{\mathfrak{l}(1,-1)}X_{3N})^2 + (\mathbf{\mathfrak{I}}_{\mathfrak{l}(1,-1)}X_{4N})^2}.$ Несущие частоты всех обнаруженных СлС будут находиться в частотном диапазоне $[f_1 - f_1]$ $1/3T_{\text{нак}}, f_1 + 1/3T_{\text{нак}}], T_{\text{нак}} = NT_3$, где f_1 – несущая частота опорного СлС, использовавшаяся при выделении комплексной огибающей (см. рисунок 1.1). Затем необходимо изменить опорную частоту квадратурного приемника на 1/37_{нак} и повторить вычисления, описанные выше. Для обнаружения всех копий СлС, рассогласованных по частоте и задержке по времени, необходимо либо последовательно перестраивать опорную частоту квадратурного приемника с шагом 1/37_{нак}, либо параллельно формировать опорные частоты с тем же шагом, перекрывая область неопределенности СлС по частоте при параллельном вычислении сверток.

Таким образом, основой оптимального алгоритма обнаружения-различения СлС является процедура синхронизации ПСП, на основе которой он сформирован. Данную процедуру можно описать как перемножение матрицыциркулянта ПСП $\mathfrak{T}_{\mathfrak{u}(1,-1)}$, строки которой представляют собой все возможные ее циклические сдвиги, на вектор X_N , полученный со входа приемника и содержащий одну из строк этой матрицы, с последующим определением номера максимальной компоненты полученного вектора. Очевидно, что этот алгоритм соответствует матричной форме операции дискретной свертки ПСП, результат которой будем называть ее ПАКФ [5, 10, 47]. Порядок следования циклических сдвигов ПСП в строках матрицы $\mathfrak{J}_{\mathfrak{u}(1,-1)}$, как правило, не имеет принципиального значения [7,9,29]. В дальнейшем будем рассматривать МП и ПСП Голда, широко использующиеся в настоящее время во многих радиотехнических системах [6,10,11]. Как показано ниже, быстрый алгоритм перемножения $\mathfrak{F}_{\mathfrak{q}(1,-1)}$ и любой ее строки, транспонированной в столбец, с помощью быстрого преобразования Адамара (БПА), зависит не только от выбора ПСП, но и от способа построения этой матрицы.

1.3. Быстрые спектральные преобразования в базисе Уолша-Адамара и обнаружение сложных сигналов

Как показано в предыдущем разделе, алгоритм обнаружения СлС сводится к цифровому векторно-матричному перемножению, вычислительная сложность которого пропорциональна длине квадрата ПСП, на основе которой сформирован СлС, что существенно затрудняет его программную реализацию. Поэтому для формирования таких сигналов целесообразно использовать ПСП, приводящиеся к специальным ортогональным функциям, в системах которых можно построить быстрые алгоритмы векторно-матричного перемножения [6,29]. В дальнейшем будем рассматривать в качестве исходной системы ортогональных функций систему Уолша-Адамара.

1.3.1. Функции Радемахера и система Уолша-Адамара

Любая дискретная система Радемахера *N*-го порядка описывается формулой:

$$r_i(x) = (-1)^{x_i} = \cos\pi x_i, \tag{1.7}$$

1-1-111 11-1-1-1-1, $r_3(x) = 11-1-111-1-111-1-111-1-1$ и $r_4(x) = 1-11-11-11-1-1-1$. Таким образом, если число x меняется от 0 до (N-1), то значения любого разряда x_i его двоичного представления изменяется периодически с периодом $2^{N/2}$, следовательно, любая функция Радемахера является периодической, и на интервале длиной N укладывается ровно 2^{i-1} ее периодов. Кроме того, очевидно, что функции Радемахера в любой их системе являются ортогональными и нечетными, в результате чего их можно использовать для разложения только не четных дискретных сигналов, то есть система не является полной [48].

Любая полная ортогональная система функций Уолша *N*-го порядка может быт получена на основе соответствующей системы Радемахера того же порядка. В частности, система Уолша-Адамара может быть получена по правилу:

$$had(h, x) = \prod_{i=1}^{n} [r_i(x)]^{h_i} = [r_1(x)]^{h_1} [r_2(x)]^{h_2} \dots [r_n(x)]^{h_n},$$
(1.8)

где had(h, x) – функция Уолша, h = 0, ..., (N - 1) - ее номер в системе Уолша-Адамара, $h_1, h_2, ..., h_n$ – значения разрядов двоичного представления h (h_n младший разряд). Таким образом, объем полной системы функций Уолша-Адамара A_m составляет N, а матрица A_m , описывающая эту систему содержит Nстрок, и в ее строках с номерами $y = 2^v, v = 0, 1, 2, ..., 2^{m-1}$ содержатся функции Радемахера, поскольку в этом случае двоичное представление y лишь в одном разряде содержит единицу.

Иначе матрица Уолша-Адамара A_m порядка N определяется как m-я кронекеровская степень матрицы Адамара второго порядка размером 2х2:

$$A_m = A_2^{[m]}, (1.9)$$

где

$$A_{2}^{[m]} = A_{2}^{(1)} \times A_{2}^{(2)} \times \dots \times A_{2}^{(i)} \times \dots \times A_{2}^{(m)},$$
$$A_{2}^{(i)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, i = 1, 2, \dots, m,$$

× - обозначение кронекеровского перемножения матриц [48].

1.3.2. Факторизация матрицы Уолша-Адамара и быстрое преобразование Адамара

Матрица A_m может быть факторизована, то есть представлена как простое произведение матриц, содержащих большое число нулевых символов, то есть в виде:

$$A_m = B_m^m, (1.10)$$

где B_m – квадратная матрица порядка $N = 2^m$. Значения ее элементов $b_{h,x}$ может быть найдено с помощью теоремы Гуда, которая применима только к матрицам A_m , представляющим собой кронекеровские степени более простых матриц B_m , где h - номер строки, а x – номер столбца, в которых находится элемент $b_{h,x}$. Согласно этой теореме

$$b_{h,x} = \left\{\lambda_{\varepsilon,r}\delta_Q^G\right\}, \varepsilon = h_1, r = x_m, \tag{1.11}$$

где $\lambda_{\varepsilon,r}$ – элементы матрицы A_2 , $\varepsilon = 0,1$ и r = 0,1 – номера ее строк и столбцов соответственно,

$$\delta_Q^G = \begin{cases} 1 & \text{при } G = Q \\ 0 & \text{при } G \neq Q \end{cases} -$$
(1.12)

символ Кронекера, причем $G = [\frac{x}{2}]$ – целая часть от числа x/2, $Q = ((h))_{N/2}$ – остаток от деления h на $N = 2^{m-1}$; h_1 – старший разряд представления числа h в двоичной системе счисления, где $h = h_m + 2h_{m-1} + \dots + 2^{m-1}h_1$; x_m – младший разряд представления числа xв двоичной системе счисления.

С целью определения структуры матрицы B_m заметим, что значения дискретной функции [x/2] равняются 0,0,1,1,2,2,3,3,..., $2^{m-1} - 1, 2^{m-1} - 1, 2^m, 2^m$, а значения $((h))_{N/2}$ – соответственно равны 0,1,2,3,..., $2^{m-1} - 1, 0,1,2,3,..., 2^{m-1} - 1$. Но тогда из (1.11) следует, что в каждой ее строке будет лишь два элемента, отличных от нуля, то есть

$$B_m = \begin{bmatrix} 1 & 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 1 & \dots & 0 & 0 \\ & & \dots & & & \\ 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & \dots & 0 & 0 \\ & & \dots & & & \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 \end{bmatrix}.$$

$$(1.13)$$

Таким образом, разложение любого дискретного сигнала, представленного в виде вектора **X**, по базисным функциям системы Уолша-Адамара с учетом факторизации матрицы *A*_mописывается формулой:

$$\boldsymbol{Y} = \boldsymbol{B}_m^m \boldsymbol{X} = \boldsymbol{B}_m [\boldsymbol{B}_m \dots [\boldsymbol{B}_m \boldsymbol{X}]]. \tag{1.14}$$

Согласно (1.14) сначала вычисляется столбец $Y_1 = B_m X$, потом столбец $Y_2 = B_m Y_1$ и т.д. Последним вычисляется столбец $Y_m = B_m Y_{m-1}$. Процедуры вычисления столбцов $Y_1, Y_2, ..., Y_m$ одинаковы, и описываются элементарным графом с учетом алгоритма факторизации матрицы Адамара. Вычислительные сложности алгоритмов простого векторно-матричного перемножения и БПА по числу элементарных арифметических операций в зависимости от длины вектора показаны на рисунке 1.7, а пример элементарного графа БПА при m = 5 приводится на рисунке 1.8.

Рисунок 1.7 – Вычислительные сложности простого векторно-матричного перемножения и БПА в зависимости от длины вектора.

Рисунок 1.8 – Пример графа БПА при m = 5.

1.3.3. Быстрое преобразование в усеченном базисе Уолша-Адамара

Как показано ниже в этой работе, ПСП, использующиеся для формирования СлС, могут приводиться к ограниченному набору строк матрицы Уолша-Адамара, поэтому важное значения могут иметь быстрые преобразования в усеченном базисе Уолша-Адамара. В качестве примера рассмотрим быстрое преобразование в системе Радемахера. С целью разработки такого алгоритма будем учитывать, что функции Радемахера располагаются в строках матрицы Адамара A_m с номерами $y = 2^v$, $v = 0,1,2,..., 2^{m-1}$ (например, при m = 5 - в строках с номерами 1,2,4,8,16, при m = 9 - в строках с номерами 1,2,4,8,16,32,64,128,256), при m = 10– в строках с номерами 1,2,4,8,16,32,64,128,256,512 и т.д.), а также возможность представления A_m в виде простого произведения слабо заполненных матриц B_m , что описано выше.

Правила быстрых спектральных преобразований в усеченных базисах системы Уолша-Адамара описаны в [49]. Сохраняя в матрице A_m только m строк с номерами y из общего их числа, равного 2^m , получим усеченную матрицу Адамара.

В матрице B_1 сохраняются только m строк с теми же номерами $y = 2^v$, $v = 0,1,2,...,2^{m-1}$, которые были сохранены в матрице A_m , то есть при умножении полученной усеченной матрицы B_{1y} на результат умножения $B_{2y}...B_{my}$ на входной вектор X потребуется лишь m операций суммирования. Матрицу B_{2y} получим учитывая, что (N - 2m) столбцов матрицы B_{1y} состоят только из нулевых элементов. Эти столбцы тоже надо исключить из B_{1y} , одновременно исключая строки матрицы B_2 , номера которых совпадают с номерами столбцов, исключенных в B_{1y} , поэтому матрица B_{2y} содержит 2m строк, и при умножении ее на $B_3 ... B_m X$ потребуется лишь 2m операций суммирования, в последней матрице B_{my} всегда сохраняется 2^m строк, то есть $B_{my} = B$.

Таким образом, число строк, сохраняемых в матрицах B_{sy} , s = 1, ..., m и совпадающее с числом элементарных операций суммирования, которое надо произвести для перемножения вектора с каждой матрицей, описывается как

 $m + 2m + (2 * 2m - 4) + (2 * (2 * 2m - 4) - 8) + (2 * (2 * (2 * 2m - 4) - 8) - 16) + \cdots$. Можно вывести рекуррентную формулу для расчета числа ненулевых строк матриц **B**_{sv}:

$$\boldsymbol{B}_{s} = \begin{cases} m, если s = 1, \\ 2m, если s = 2, \\ 2B(s-1) - 2^{s-1}, если s = 3, 4, \dots, \end{cases}$$
(1.15)

где B_s – число строк, сохраняемых в матрице B_{sy} . Тогда число элементарных математических операций суммирования при ускоренном умножении матрицы из функций Радемахера на вектор:

$$S = B(1) + B(2) + \sum_{s=3}^{m} 2B(s-1) - 2^{s-1},$$
(1.16)

а выигрыш в числе таких операций, по сравнению с простым перемножением матрицы такой же размерности на вектор составит $I(m) = m2^m/S$. Оценить значимость этого выигрыша можно, анализируя рисунок 1.9. Как видно, при m = 5 он составляет примерно 1.84, но при типичных длинах ПСП, использующихся при построении, например, навигационных кодов, он более существенный – при N = 511(m = 9) выигрыш составляет 3 раза, а при N = 1023(m = 10) - 3,4 раза. Подчеркнем, что на рисунке 1.9 приводится выигрыш в числе элементарных операций при ускоренном перемножении матрицы функций Радемахера и вектора, по сравнению с простым перемножением.

Рисунок 1.9 – Выигрыш в числе элементарных арифметических операций при ускоренном перемножении матрицы функций Радемахера и вектора, по сравнению с простым перемножением.

Пример графа быстрого преобразования при ускоренном перемножении матрицы функций Радемахера при *m* = 5 и вектора приводится на рисунке 1.10.

Рисунок 1.10 – Граф быстрого преобразования при ускоренном перемножении матрицы функций Радемахера при *m* = 5 и вектора

Выводы по разделу 1

1. При совместном обнаружении и оценке параметров совокупности шумоподобных СлС, включая их копии, случайно сдвинутые друг относительно друга по частоте и времени, по критерию максимального правдоподобия на фоне белого гауссовского шума, необходимо вычислять композицию действительных частей их ДКФ с использованием корреляторов или согласованных фильтров. При этом функция распределения суммы взаимных помех и преобразованного шума будет соответствовать гауссовскому закону, а оцениваемыми параметрами СлС будут их несущие частоты, фазы несущих частот и относительные задержки по времени. В результате, данный подход может использоваться при относительно малых сдвигах по фазе несущих частот СлС.

2. При значительных фазовых нестабильностях несущих частот композиции СлС обычно вычисляют модуль ДКФ, в результате чего функция распределения взаимных помех и шума на входе решающего устройства приемника будет соответствовать закону Рэлея-Райса.

3. При обнаружении как одного, так и совокупности СлС с неизвестными несущими частотами и задержками по времени необходимо многократно вычислять свертки опорных и принимаемых СлС. В цифровом эквиваленте операция вычисления свертки сводится к векторно-матричному перемножению. При синхронизации по принимаемым СлС – к перемножению матрицциркулянтов ПСП, используемых при формировании СлС, на вектор отсчетов сигнала на входе приемника.

4. При использовании двоичных ПСП быстрое перемножение ее матрицыциркулянта на вектор можно реализовать с использованием быстрого преобразования Адамара, если возможно линейное преобразование матрицциркулянтов используемых ПСП к матрице Адамара. При этом число элементарных арифметических операций, которое потребуется, составляет $Nlog_2N = Nm$, в то время как при непосредственном умножении матрицы на вектор потребуется N^2 элементарных арифметических операций.
2. СИНХРОНИЗАЦИЯ М-ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ПСП ГОЛДА НА ОСНОВЕ БЫСТРОГО ПРЕОБРАЗОВАНИЯ АДАМАРА

В предыдущем разделе указывается на взаимосвязь задач совместного обнаружения и оценки параметров СлС и декодирования блоковых кодов, построенных на основе циклических сдвигов их слов. В данном разделе рассматривается задача синхронизации МП и ПСП Голда, чтобы подчеркнуть взаимосвязь решаемой задачи с синхронизацией периодического СлС при его обработке в приемнике. Под синхронизацией ПСП понимается определение ее циклического сдвига, начиная с момента начала наблюдения СлС, на основе которой он сформирован. Вопросы, связанные с выделением ПСП из этого СлС рассмотрены в предыдущем разделе.

Отметим также, что при решении задачи синхронизации ПСП с большими периодами повторения важное значение приобретает способ выявления соответствия номеров строк матрицы Уолша-Адамара и начальных блоков циклических сдвигов ПСП, то есть в матричной интерпретации данной задачи строкам матрицы-циркулянта ПСП, которая может быть построена разными способами, как это показано ниже. Таким образом, целью данного раздела является исследование вариантов построения матриц-циркулянтов ПСП на основе мультипликативных групп расширенного поля Галуа по модулю неприводимого примитивного полинома, а также вариантов приведения этих матриц к полной или усеченной матрице Адамара, либо ее аналогам, с целью разработки ускоренных алгоритмов синхронизации ПСП при обработке шумоподобных СлС. Результаты этого раздела опубликованы автором данной диссертации в [2,3,20,39].

2.1. Построение матриц-циркулянтов МП на основе мультипликативных групп поля Галуа

Представим любую МП с элементами (0,1), сформированную на основе неприводимого примитивного полинома $f_m(x)$, в виде вектора-строки ${}_{l_i}^n \mathfrak{F}_i = [x_{i,k}, k = 0, ..., N - 1]$, где i = 0, ..., m - 1 – номер циклического сдвига МП на $l_i \in \{0, 1 ..., N - 1\}$ символов относительно МП ${}_0^n \mathfrak{F}_0$ с условно нулевым циклическим сдвигом, $N = 2^m - 1$ – длина (период) МП, m – порядок $f_m(x)$, n – номер выбранного способа упорядочения МП по их циклическим сдвигам [4,10,35,36].

Как известно, можно выбрать такой способ упорядочения любых m МП, описанных выше, при котором столбцы $\alpha^k = [x_{i,k}, i = 0, ..., m - 1]^T, k = 0, ..., N - 1$, образуют мультипликативную группу расширенного поля Галуа $GF(2^m)$ построенного по модулю $f_m(x)$, где k – номер элемента группы, $[\cdot]^T$ обозначение транспонированной матрицы [29,35,36]. Такая группа имеет циклическую структуру и состоит из максимально возможного числа Nнесовпадающих ненулевых элементов, являющихся степенями первообразного элемента α^0 поля, причем $\alpha^k = H_n \alpha^{k-1}$, где H_n – сопровождающая матрица $f_m(x)$ [36]. Обычно рассматривают четыре типа таких матриц [37]:

$$H_{1} = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_{0} \\ 1 & 0 & \cdots & 0 & a_{1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_{m-2} \\ 0 & 0 & \cdots & 1 & a_{m-1} \end{bmatrix} \qquad H_{2} = \begin{bmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ a_{0} & a_{1} & \cdots & a_{m-2} & a_{m-1} \end{bmatrix}$$

$$\boldsymbol{H}_{3} = \begin{bmatrix} a_{m-1} & 1 & \cdots & 0 & 0 \\ a_{m-2} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1} & 0 & \cdots & 0 & 1 \\ a_{0} & 0 & \cdots & 0 & 0 \end{bmatrix} \qquad \boldsymbol{H}_{4} = \begin{bmatrix} a_{m-1} & a_{m-2} & \cdots & a_{1} & a_{0} \\ 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}, \quad (2.1)$$

где $a_0, a_1, ..., a_{m-2}, a_{m-1}$ – коэффициенты полинома $f_m(x)$, принадлежащие множеству {0,1}; таким образом, размерность этих матриц будет $m \times m$. Важным

является свойство цикличности группы, то есть $\alpha^0 = \alpha^N, \alpha^1 = \alpha^{N+1}, ...$ Кроме того, в качестве α^0 можно выбрать любой ее элемент. Таким образом,

$$\mathbf{\mathfrak{T}}_{m,1} = \begin{bmatrix} {n \atop 0} \mathbf{\mathfrak{T}}_{0} \\ {l_{1} \mathbf{\mathfrak{T}}_{1}} \\ \cdots \\ {l_{m-1} \mathbf{\mathfrak{T}}_{m-1}} \end{bmatrix} = [\boldsymbol{\alpha}^{0} \quad \boldsymbol{\alpha}^{1} \quad \cdots \quad \boldsymbol{\alpha}^{N-1}], \qquad \boldsymbol{\alpha}^{k} = \boldsymbol{H}_{n} \boldsymbol{\alpha}^{k-1}, \qquad (2.2)$$

где столбцы $\boldsymbol{\alpha}^k$ могут быть получены любым из возможных способов, то есть при выборе матрицы \boldsymbol{H}_n , что определяет значения циклических сдвигов МП l_i (i = 0, ..., m - 1) относительно МП ${}_0^n \mathfrak{F}_0$ при выбранном $\boldsymbol{\alpha}^0$. В качестве примера в таблице 2.1 приведены значения элементов четырех максимальных мультипликативных групп поля Галуа, полученных на основе полинома $f_5(x) = x^5 + x^3 + 1$ и представленных в десятичной системе счисления. Такое их представление в дальнейшем обозначаем как $[\boldsymbol{\alpha}^k]_{10}$. Был выбран первообразный элемент $\boldsymbol{\alpha}^0 = [1 \ 0 \ 0 \ 0]^{\mathrm{T}}$, так что во всех случаях $[\boldsymbol{\alpha}^0]_{10} = 16$.

Таблица 2.1. Максимальные мультипликативные группы поля Галуа по модулю полинома $f_5(x) = x^5 + x^3 + 1$

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
H_1	16	8	4	2	1	18	9	22	11	23	25	30	15	21	24	12	6	3	19	27	31	29	28	14	7	17	26	13	20	10	5
H_2	16	1	2	5	10	21	11	23	14	29	27	22	24	17	3	7	6	15	31	30	28	25	19	6	13	26	20	9	18	4	8
H_{3}	16	1	18	13	26	29	19	15	30	21	3	6	12	24	25	27	31	23	7	14	28	17	11	22	5	10	20	1	2	4	8
H_4	16	8	20	10	21	26	29	14	23	27	13	6	3	17	24	28	30	31	15	7	19	25	12	22	11	5	18	9	4	2	1

Таким образом, например, для матрицы *H*₁, элементы мультипликативной группы поля Галуа можно вычислить по формуле:

$$\boldsymbol{\alpha}^{k+1} = \begin{bmatrix} x_{0,k+1} \\ x_{1,k+1} \\ \cdots \\ x_{m-1,k+1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \cdots & 0 & a_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_{m-2} \\ 0 & 0 & \cdots & 1 & a_{m-1} \end{bmatrix} \begin{bmatrix} x_{0,k} \\ x_{1,k} \\ \cdots \\ x_{m-1,k} \end{bmatrix}, k = 0, \dots, N-1, \quad (2.3)$$

причем *m* циклических сдвигов порождаемой МП (то есть на $l_0, l_1, ..., l_{m-1}$ символов относительно ${}_0^1\mathfrak{F}_0$) располагаются в строках матрицы [37]:

$$\mathbf{\mathfrak{T}}_{m,1} = \begin{bmatrix} x_{0,0} & x_{0,1} & \dots & x_{0,N-1} \\ x_{1,0} & x_{1,1} & \dots & x_{1,N-1} \\ & \ddots & \ddots & \ddots \\ x_{m-1,0} & x_{m-1,1} & \dots & x_{m-1,N-1} \end{bmatrix},$$
(2.4)

где $\mathfrak{T}_{m,1}$ – матрица, соответствующая H_1 . Ее столбцы представляют собой элементы мультипликативной группы поля Галуа по модулю $f_m(x)$ с коэффициентами $a_0, a_1, \dots, a_{m-2}, a_{m-1}$. В качестве примера в таблице 2.2 приводятся элементы матрицы $\mathfrak{T}_{5,1}$ для полинома $f_5(x) = x^5 + x^4 + x^2 + x + 1$, а в таблице 2.3 – для двойственного полинома $f_5(x) = x^5 + x^4 + x^3 + x + 1$.

Таблица 2.2 Элементы мультипликативной группы поля Галуа на основе сопровождающей матрицы H_1 полинома $f_5(x) = x^5 + x^4 + x^2 + x + 1$.

							-	-				-						-							-						
k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$[\alpha^k]_{10}$	16	8	4	2	1	29	19	20	10	5	31	18	9	25	17	21	23	22	11	24	12	6	3	28	14	7	30	15	26	13	27
<i>x</i> _{0,k}	1	0	0	0	1	1	1	1	0	0	1	1	0	1	1	1	1	1	0	1	0	0	0	1	0	0	1	0	1	0	1
<i>x</i> _{1,k}	0	1	0	0	0	1	0	0	1	0	1	0	1	1	0	0	0	0	1	1	1	0	0	1	1	0	1	1	1	1	1
<i>x</i> _{2,k}	0	0	1	0	0	1	0	1	0	1	1	0	0	0	0	1	1	1	0	0	1	1	0	1	1	1	1	1	0	1	0
x _{3,k}	0	0	0	1	0	0	1	0	1	0	1	1	0	0	0	0	1	1	1	0	0	1	1	0	1	1	1	1	1	0	1
x 4,k	0	0	0	0	1	1	1	0	0	1	1	0	1	1	1	1	1	0	1	0	0	0	1	0	0	1	0	1	0	1	1

Таблица 2.3. Элементы мультипликативной группы поля Галуа на основе сопровождающей матрицы H_1 полинома $f_5(x) = x^5 + x^4 + x^3 + x + 1$.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$[\alpha^k]_{10}$	16	8	4	2	1	27	22	11	30	15	28	14	7	24	12	6	3	26	13	29	21	17	19	18	9	31	20	10	5	25	23
$x_{0,k}$	1	0	0	0	1	1	1	0	1	0	1	0	0	1	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0	1	1
$x_{1,k}$	0	1	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0	1	1	1	0	0	0	0	1	1	0	1	0	1	0
<i>x</i> _{2,k}	0	0	1	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0	1	1	1	0	0	0	0	1	1	0	1	0	1
<i>x</i> _{3,k}	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0	1	1	1	0	0	0	0	1	1	0	1	0	1	0	0	1
<i>x</i> _{4,k}	0	0	0	0	1	1	0	1	0	1	0	0	1	0	0	0	1	0	1	1	1	1	1	0	1	1	0	0	1	1	1

Матрицу-циркулянт МП $\mathfrak{T}_{m,n,\mu}$ с элементами (0,1), содержащую ее циклические сдвиги на $l_0, l_1, ..., l_{m-1}$ символов, а также все остальные сдвиги, не совпадающие с ними, сформируем в соответствии с правилом:

$$\mathbf{\mathfrak{T}}_{m,n,\boldsymbol{\mu}} = \begin{bmatrix} \mathbf{\mathfrak{T}}_{m,n} \\ \boldsymbol{H}_n^{\ m} \mathbf{\mathfrak{T}}_{m,n} \\ \boldsymbol{H}_n^{\ 2m} \mathbf{\mathfrak{T}}_{m,n} \\ \cdots \\ \boldsymbol{H}_n^{\ C(N)m} \mathbf{\mathfrak{T}}_{m,n} \end{bmatrix}, \qquad (2.5)$$

где $C(N) = \left(\frac{A(N)}{m}\right) - 1$, A(N) – число, максимально близкое к N, делящееся нацело на m и удовлетворяющее неравенству A(N) > N. Таким образом, $\frac{A(N)}{m}$ – это общее число блоков в матрице $\mathfrak{T}_{m,n,\mu}$, содержащих матрицу $\mathfrak{T}_{m,n}$ или ее преобразование вида $H_n^x \mathfrak{T}_{m,n}$. Размерность каждого блока составит $m \times (N-1)$. Таким образом, размерность матрицы $\mathfrak{T}_{m,n,\mu}$ будет $A(N) \times (N-1)$, в результате чего последний блок $\mathfrak{T}_{m,n,\mu}$ в своих A(N) - N строках будет содержать МП, циклические сдвиги которых совпадают со сдвигами МП первого блока. В качестве примера элементы $\mathfrak{T}_{5,1,\mu}$, сформированной на основе $f_5(x) = x^5 + x^3 + 1$ и H_1 , приведены в таблице 2.4.

$[\alpha^{k}]_{10}$	16	8	4	2	1	18	9	22	11	23	25	30	15	21	24	12	6	3	19	27	31	29	28	14	7	17	26	13	20	10	5	i	l_i
$x_{0,k}$	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	0	0
$x_{1,k}$	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	1	30
<i>x</i> _{2,<i>k</i>}	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	2	29
<i>x</i> _{3,k}	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	3	2
<i>x</i> _{4,k}	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	4	1
<i>x</i> _{5,k}	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	5	5
<i>x</i> _{6,k}	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	6	4
<i>x</i> _{7,k}	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	7	3
<i>x</i> _{8,k}	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	8	7
<i>x</i> _{9,k}	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	9	6
$x_{10,k}$	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	10	10
$x_{11,k}$	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	11	9
$x_{12,k}$	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	12	8
$x_{13,k}$	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	13	12
$x_{14,k}$	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	14	11
$x_{15,k}$	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	15	15
$x_{16,k}$	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	16	14
$x_{17,k}$	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	17	13
$x_{18,k}$	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	18	17
$x_{19,k}$	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	19	16
$x_{20,k}$	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	20	20
$x_{21,k}$	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	21	19
$x_{22,k}$	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	22	18
$x_{23,k}$	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	23	22
$x_{24,k}$	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	24	21
$x_{25,k}$	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	25	25
$x_{26,k}$	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	26	24
$x_{27,k}$	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	27	23
<i>x</i> _{28,k}	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	28	27
<i>x</i> _{29,k}	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	29	26
<i>x</i> _{30,k}	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	30	30
<i>x</i> _{31,<i>k</i>}	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	31	29
<i>x</i> _{32,k}	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	32	28
<i>x</i> _{33,k}	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	33	1
<i>x</i> _{34,k}	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	34	0

Из ее анализа следует, что последовательность $l_0, l_1, ..., l_{34}$, расположенная в последнем столбце таблицы 2.4, выглядит случайной, хотя второй блок $\mathfrak{T}_{5,1,\mu}$ из m = 5 ее строк сдвинут относительно первого блока из такого же количества строк на 5 символов МП, третий блок сдвинут относительно него на 10 символов и т.д. Кроме того, столбцы $\mathfrak{T}_{5,1,\mu}$ не являются МП. Программа построения матрицциркулянтов М-последовательности и кода Голда на основе мультипликативных групп расширенных полей Галуа приводится в приложении А.

Совершенно другую структуру имеет $\mathfrak{T}_{5,2,\mathfrak{q}}$, сформированная на основе того же полинома $f_5(x) = x^5 + x^3 + 1$ и H_2 и приведенная в таблице 2.5, поскольку в ее строках располагаются циклические сдвиги МП, смещенные вправо на один символ, друг относительно друга. Кроме того, в ее столбцах содержатся циклические сдвиги той же МП, причем в каждом последующем столбце МП сдвинута циклически на один символ, по сравнению с предыдущим столбцом. Очевидно, что данное свойство характерно для всех $\mathfrak{T}_{m,2,\mathfrak{q}}$, построенных на основе H_2 , и оно не свойственно $\mathfrak{T}_{m,1,\mathfrak{q}}$, $\mathfrak{T}_{m,3,\mathfrak{q}}$, $\mathfrak{T}_{m,4,\mathfrak{q}}$ сформированным на основе H_1 , H_3 и H_4 соответственно. Будем называть все матрицы-циркулянты МП, сформированные на основе H_2 , упорядоченными по циклическим сдвигам или просто упорядоченными.

Важнейшим свойством упорядоченных матриц-циркулянтов является очевидная и простая взаимосвязь между номером их строки i и абсолютным циклическим сдвигом МП, располагающейся в этой строке, определяемым набором m ее символов:

$$\boldsymbol{H}_{2}{}^{i}\boldsymbol{\alpha}^{0} = \boldsymbol{b}_{i}, \qquad (2.6)$$

где $\boldsymbol{b}_i = [x_{i,k}, k = 0, ..., m - 1]$ – начальный блок МП, находящейся в *i*-ой строке матрицы-циркулянта.

Другим важным свойством упорядоченной матрицы-циркулянта является циклический сдвиг последовательности элементов мультипликативных групп $H_2^{x}\mathfrak{T}_{m,n}$ (x = 0, m, 2m, ...) на один элемент вправо при выборе каждого следующего элемента группы в качестве первообразного, в результате чего

существуют N вариантов этой матрицы. В любом из них в строках от *i*-ой до (i + m - 1)-ой будут располагаться элементы мультипликативной группы поля Галуа, циклически сдвинутые на *i* символов относительно $\mathfrak{T}_{m,2}$, где *i* может принимать любое значение от 1 до (N - 1).

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30		
$[\alpha^{k}]_{10}$	16	1	2	5	10	21	11	23	14	29	27	22	12	24	17	3	7	15	31	30	28	25	19	6	13	26	20	9	18	4	8	i	l_i
$x_{0,k}$	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	0	0
$x_{1,k}$	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	1	1
<i>x</i> _{2,k}	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	2	2
<i>x</i> _{3,k}	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	3	3
$x_{4,k}$	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	4	4
$x_{5,k}$	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	5	5
<i>x</i> _{6,k}	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	6	6
<i>x</i> _{7,k}	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	7	7
$x_{8,k}$	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	8	8
<i>x</i> _{9,k}	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	9	9
<i>x</i> _{10,<i>k</i>}	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	10	10
$x_{11,k}$	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	11	11
<i>x</i> _{12,k}	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	12	12
<i>x</i> _{13,k}	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	13	13
$x_{14,k}$	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	14	14
<i>x</i> _{15,k}	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	15	15
<i>x</i> _{16,k}	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	16	16
$x_{17,k}$	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	17	17
<i>x</i> _{18,k}	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	18	18
<i>x</i> _{19,k}	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	19	19
<i>x</i> 20, <i>k</i>	1	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	20	20
$x_{21,k}$	1	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	21	21
<i>x</i> _{22,<i>k</i>}	1	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	22	22
<i>x</i> _{23,k}	0	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	23	23
<i>x</i> _{24,k}	0	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	24	24
<i>x</i> _{25,k}	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	25	25
<i>x</i> 26, <i>k</i>	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	26	26
<i>x</i> _{27,<i>k</i>}	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	27	27
<i>x</i> 28, <i>k</i>	1	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	28	28
<i>x</i> 29, <i>k</i>	0	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	29	29
<i>x</i> 30, <i>k</i>	0	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	30	30
$x_{31,k}$	1	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	31	0
<i>x</i> _{32,k}	0	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	32	1
<i>x</i> _{33,k}	0	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	33	2
<i>x</i> 34, <i>k</i>	0	0	1	0	1	0	1	1	1	0	1	1	0	0	0	1	1	1	1	1	0	0	1	1	0	1	0	0	1	0	0	34	3

Таблица 2.5. Матрица $\mathfrak{F}_{5,2,\mathfrak{q}}$, сформированная на основе $f_5(\mathbf{x}) = \mathbf{x}^5 + \mathbf{x}^3 + 1$

2.2. Преобразование матрицы-циркулянта МП к матрице, состоящей из функций Уолша

Переставим столбцы матрицы $\mathfrak{T}_{m,2,\mathfrak{q}}$ при любом значении \mathfrak{a}^0 по возрастанию значений элементов мультипликативной группы поля Галуа $[\mathfrak{a}^k]_{10}$, сформированной на основе H_2 при таком же значении \mathfrak{a}^0 [7,9]. В результате $\mathfrak{T}_{m,2}$ будет преобразована в матрицу R_{ma} , столбцы которой образуют так называемый простой двоичный код, а строки являются аналогами функций Радемахера [48,49] без нулевого символа при нумерации символов с нуля: r_{0a} , r_{1a} , ... $r_{(m-1)a}$. Матрица $R_{ma} = [r_{0a} r_{1a} \dots r_{(m-1)a}]^{\mathsf{T}}$ при m = 5 показана в таблице 2.6.

Тогда $\mathfrak{T}_{m,2,\mu}$ преобразуется в матрицу

$$\boldsymbol{W}_{m,p(1,0)} = \begin{bmatrix} \boldsymbol{R}_{ma} \\ \boldsymbol{H}_{2}^{\ m} \boldsymbol{R}_{ma} \\ \boldsymbol{H}_{2}^{\ 2m} \boldsymbol{R}_{ma} \\ \cdots \\ \boldsymbol{H}_{2}^{\ C(N)m} \boldsymbol{R}_{ma} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_{m} \boldsymbol{R}_{ma} \\ \boldsymbol{H}_{2}^{\ m} \boldsymbol{R}_{ma} \\ \cdots \\ \boldsymbol{H}_{2}^{\ C(N)m} \boldsymbol{R}_{ma} \end{bmatrix} = \begin{bmatrix} \boldsymbol{I}_{m} \\ \boldsymbol{H}_{2}^{\ m} \\ \boldsymbol$$

где $W_{m,p(1,0)}$ – расширенная матрица функций Уолша без нулевого символа с элементами (0,1), содержащая некоторое количество повторяющихся строк; I_m – единичная матрица размером $m \times m$.

Строки матриц $H_2^{\ x}R_{ma}$ (x = m, 2m, ...) представляют собой комбинации сумм строк матрицы R_{ma} при сложении символов по модулю 2. Как известно, такие суммы образуют функции Уолша без нулевых символов при нумерации символов с нуля.

С целью выявления способа их упорядочения в (2.7) рассмотрим матрицу

$$H = \begin{bmatrix} H_2^m \\ H_2^{2m} \\ \vdots \\ H_2^{C(N)m} \end{bmatrix},$$
 (2.8)

Покажем, что ее строки образуют мультипликативную группу поля Галуа, сформированную на основе H_1 . Действительно,

$$H = (H^{\mathsf{T}})^{\mathsf{T}} = [((H_2^{\mathsf{T}})^{\mathsf{T}})^m \quad ((H_2^{\mathsf{T}})^{\mathsf{T}})^{2m} \quad \cdots \quad ((H_2^{\mathsf{T}})^{\mathsf{T}})^{\mathcal{C}(N)m}]^{\mathsf{T}} = \begin{bmatrix} (H_1^{\mathsf{m}})^{\mathsf{T}} \\ (H_1^{\mathsf{m}})^{\mathsf{T}} \\ (H_1^{\mathsf{m}})^{\mathsf{T}} \\ \vdots \\ (H_1^{\mathcal{C}(N)m})^{\mathsf{T}} \end{bmatrix}, \qquad (2.9)$$

поскольку $\boldsymbol{H}_{2}^{T} = \boldsymbol{H}_{1}$. Кроме того, учтем, что

$$(\boldsymbol{H}_{1})^{\boldsymbol{m}} = (\boldsymbol{H}_{1})^{\boldsymbol{m}-1} \boldsymbol{H}_{1} = (\boldsymbol{H}_{1})^{\boldsymbol{m}-1} \begin{bmatrix} 0 & 0 & \cdots & 0 & a_{0} \\ 1 & 0 & \cdots & 0 & a_{1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & a_{\boldsymbol{m}-2} \\ 0 & 0 & \cdots & 1 & a_{\boldsymbol{m}-1} \end{bmatrix}.$$
 (2.10)

Далее, полагая, что первообразный элемент группы совпадает с первым столбцом H_1 , то есть $\alpha^0 = [0 \ 1 \ 0 \dots \ 0 \ 0]^T$, заметим, что $H_1 \alpha^0 = \alpha^1 = [0 \ 0 \ 1 \dots \ 0 \ 0]^T$ и совпадает со вторым столбцом H_1 и т.д.

Последний элемент $\boldsymbol{\alpha}^{m-1} = H_1 \boldsymbol{\alpha}^{m-2} = H_1 [0 \ 0 \ \dots \ 0 \ 1]^{\mathsf{T}} = [a_0 \ a_1 \ \dots \ a_{m-1}]^{\mathsf{T}}$ совпадает с последним столбцом H_1 . Таким образом, $H_1 = [\boldsymbol{\alpha}^0 \ \boldsymbol{\alpha}^1 \ \dots \ \boldsymbol{\alpha}^{m-1}]$. Тогда

$$(H_1)^m = [(H_1)^{m-1} \alpha^0 \quad (H_1)^{m-1} \alpha^1 \quad \cdots \quad (H_1)^{m-1} \alpha^{m-1}] = [\alpha^{m-1} \quad \alpha^m \quad \cdots \quad \alpha^{2m-2}].$$
(2.11)

Таблица 2.6. Аналоги функций Радемахера при m = 5

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
r_{0a}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
r_{1a}	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
r_{2a}	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
r_{3a}	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
r_{4a}	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Аналогично получим: $(H_1)^{2m} = (H_1)^{2m-1}H_1 = [\alpha^{2m-1} \quad \alpha^{2m} \quad \cdots \quad \alpha^{3m-2}]$ и т.д. В результате

 $H = [\alpha^{(m-1)^{\mathrm{T}}} \alpha^{m^{\mathrm{T}}} \dots \alpha^{(2m-2)^{\mathrm{T}}} \alpha^{(C(N)m-1)^{\mathrm{T}}} \alpha^{C(N)m^{\mathrm{T}}} \dots \alpha^{((C(N)+1)m-2)^{\mathrm{T}}}]^{\mathrm{T}}, (2.12)$ где $\alpha^{0} = [0\ 1\ 0\ \dots\ 0\ 0]^{\mathrm{T}},$ причем H в своих строках содержит элементы мультипликативной группы, построенной на основе сопровождающей матрицы H_{1} – от (m-1)-го до ((C(N)+1)m-2)-го (при m = 5 – от 4-го до 33-го, всего

30), то есть группа, представленная в этой матрице, будет усеченной. Первообразным элементом усеченной группы будет $\boldsymbol{\alpha}^{(m-1)} = \boldsymbol{H}_1^{m-1} \boldsymbol{\alpha}^0 = [a_0 \ a_1 \dots \ a_{m-1}]^{\mathrm{T}}.$

Из формул (2.7), (2.8), (2.12) следует:

$$\boldsymbol{W}_{m,p(1,0)} = \begin{bmatrix} \boldsymbol{I}_m \\ \boldsymbol{H} \end{bmatrix} \boldsymbol{R}_{ma} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ & \boldsymbol{H}_p & \end{bmatrix} \boldsymbol{R}_{ma}, \qquad (2.13)$$

где H_p – расширенная матрица H, содержащая в своих строках элементы мультипликативной группы, построенной на основе H_1 – от элемента $\alpha^0 = [0\ 1\ 0\ ...\ 0\ 0]^T$ до ((C(N) + 1)m - 2)-го элемента, всего (C(N) + 1)m - 1 > Nэлементов. Далее заметим, что $H_1[1\ 0\ ...\ 0\ 0]^T = [0\ 1\ 0\ ...\ 0\ 0]^T$. То есть, сохранив в матрице $W_{m,p(1,0)}$ лишь N первых строк, можно записать матрицу, состоящую из функций Уолша без нулевого символа при их нумерации от нуля в следующем виде:

$$\boldsymbol{W}_{m(1,0)} = \boldsymbol{\mathfrak{T}}_{m,1}^{\mathrm{T}} \boldsymbol{R}_{ma} = \begin{bmatrix} x_{0,0} & x_{1,0} & \cdots & x_{m-1,0} \\ x_{0,1} & x_{1,1} & \cdots & x_{m-1,1} \\ & \ddots & \ddots & \ddots \\ x_{0,N-1} & x_{1,N-1} & \cdots & x_{m-1,N-1} \end{bmatrix} \boldsymbol{R}_{ma}, \qquad (2.14)$$

причем все строки матрицы $\mathfrak{T}_{m,1}^{\mathsf{T}}$ – это элементы мультипликативной группы поля Галуа, построенной на основе матрицы H_1 с первообразным элементом $\boldsymbol{\alpha}^0_{H_1} = [x_{0,0} \quad x_{1,0} \quad \cdots \quad x_{m-1,0}]^{\mathsf{T}} = [10 \dots 00]^{\mathsf{T}}.$

Соответственно для преобразования любого циклического сдвига МП в функцию Уолша без нулевого символа при их нумерации с нуля надо переставить ee элементарные символы ПО возрастанию значений элементов мультипликативной группы поля Галуа, построенной на основе сопровождающей матрицы полинома вида **H**₂. При этом важное значение имеет выбор первообразного элемента группы $\alpha^0_{H_2}$, в зависимости от которого данный циклический сдвиг может быть преобразован к любой строке матрицы $W_{m(1,0)}$. заданном $\alpha^0_{H_2}$ соответствие между циклическими сдвигами Ho при преобразуемой МП и строками матрицы $W_{m(1,0)}$ будет взаимно однозначным, то есть МП с абсолютным циклическим сдвигом **b** будет преобразована в последовательность Уолша без нулевого символа при их нумерации с нуля, находящуюся в *i*-ой строке матрицы $W_{m(1,0)}$, где *i* можно найти, решив уравнение: $H_2^{\ i} \alpha^0_{\ H_2} = b$. При этом в строках матрицы

$$\boldsymbol{W}_{m(1,0)} = \begin{bmatrix} x_{0,0} \boldsymbol{r}_{0a} \oplus x_{1,0} \boldsymbol{r}_{1a} \oplus \dots \oplus x_{m-1,0} \boldsymbol{r}_{(m-1)a} \\ x_{0,1} \boldsymbol{r}_{0a} \oplus x_{1,1} \boldsymbol{r}_{1a} \oplus \dots \oplus x_{m-1,1} \boldsymbol{r}_{(m-1)a} \\ \dots \\ x_{0,N-1} \boldsymbol{r}_{0a} \oplus x_{1,N-1} \boldsymbol{r}_{1a} \oplus \dots \oplus x_{m-1,N-1} \boldsymbol{r}_{(m-1)a} \end{bmatrix},$$
(2.15)

аналоги функций Радемахера складываются по модулю 2 С весовыми коэффициентами, представляющими собой символы элементов мультипликативной группы поля, построенной на основе сопровождающей матрицы полинома H_1 с первообразным элементом $\alpha^0_{H_1} = [10 \dots 00]^{T}$. (В (2.15) 🕀 - обозначение операции суммирования по модулю 2). Таким соответственно, в *i*-ой строке матрицы $W_{m(1,0)}$ будет находиться функция Уолша без нулевого символа при их нумерации с нуля, полученная путем суммирования аналогов функций Радемахера с весовыми коэффициентами, равными значениям символов вектора $\mathbf{x} = \mathbf{H}_1{}^i \boldsymbol{\alpha}^0_{\mathbf{H}_1}$. Таким образом, любая *i*-я строка матрицы (2.15)

$$\mathbf{w}_{i(1,0)} = x_{0,i} \mathbf{r}_{0a} \oplus x_{1,i} \mathbf{r}_{1a} \oplus \dots \oplus x_{m-1,i} \mathbf{r}_{(m-1)a}, \qquad (2.16)$$

является функцией Уолша без нулевого символа при их нумерации с нуля, где

$$\begin{bmatrix} x_{0,i} \\ x_{1,i} \\ \dots \\ x_{m-1,i} \end{bmatrix} = H_1^{\ i} \begin{bmatrix} 1 \\ 0 \\ \dots \\ 0 \end{bmatrix}.$$
 (2.17)

Произведя замену символов МП в $\mathfrak{T}_{m,n,\mathfrak{q}}$ по правилу $0 \to 1, 1 \to -1,$ получим:

$$\boldsymbol{W}_{m(1,-1)} = \begin{bmatrix} \boldsymbol{r}_{0}^{x_{0,0}} \cdot \boldsymbol{r}_{1}^{x_{1,0}} \cdot \dots \cdot \boldsymbol{r}_{(m-1)}^{x_{m-1,0}} \\ \boldsymbol{r}_{0}^{x_{0,1}} \cdot \boldsymbol{r}_{1}^{x_{1,1}} \cdot \dots \cdot \boldsymbol{r}_{(m-1)}^{x_{m-1,1}} \\ \dots \\ \boldsymbol{r}_{0}^{x_{0,N-1}} \cdot \boldsymbol{r}_{1}^{x_{1,N-1}} \cdot \dots \cdot \boldsymbol{r}_{(m-1)}^{x_{m-1,N-1}} \end{bmatrix},$$
(2.18)

где $r_0, ..., r_{(m-1)}$ – функции Радемахера с элементами (1,-1) без нулевого символа при их нумерации с нуля. При этом *i*-я строка матрицы $W_{m(1,-1)}$ задается как

$$\boldsymbol{w}_{i(1,-1)} = \boldsymbol{r}_0^{x_{0,i}} \cdot \boldsymbol{r}_1^{x_{1,i}} \cdot \dots \cdot \boldsymbol{r}_{(m-1)}^{x_{m-1,i}}, i = 0, \dots, N-1, \qquad (2.19)$$

где степени функций Радемахера по-прежнему рассчитываются по формуле (2.17).

Дополнив матрицу функций Уолша (2.18) нулевой строкой при их нумерации с нуля и крайним левым столбцом, состоящими из единиц, получим полный набор ортогональных базисных функций Уолша, способ упорядочения которых в этой матрице (кроме нулевой строки, состоящей лишь из единиц) определяется последовательностью элементов мультипликативной группы поля Галуа по модулю неприводимого примитивного полинома $f_m(x)$ с коэффициентами $a_0, a_1, ..., a_{m-2}, a_{m-1}$ и его сопровождающей матрицей вида H_1 при первообразном элементе $\alpha^0_{H_1} = [10 ... 00]^{T}$.

Рассмотрим матрицу $W_{m(1,-1)}^{T}$. Она состоит из строк, в которых циклические сдвиги МП упорядочены по номеру строки, то есть каждая МП начинается с блока из *m* символов, соответствующих двоичному представлению номера строки, в которой она находится в матрице $W_{m(1,-1)}^{T}$, а по столбцам этой матрицы располагаются функции Уолша, упорядоченные по элементам мультипликативной группы поля Галуа, соответствующей матрице H_1 . Поэтому перестановка столбцов этой матрицы по возрастанию значений элементов мультипликативной группы поля Галуа, построенной на основе сопровождающей матрицы ее полинома вида H_1 при первообразном элементе $\alpha^0_{H_1} = [10 \dots 00]^T$, приводит эту матрицу к матрице Адамара без нулевых столбца и строки при их нумерации с нуля. В каждой *i*-ой строке этой матрицы находится функция Уолша без нулевого символа при их нумерации с нуля

$$\boldsymbol{w}_{i(1,-1)A_{\mathcal{A}}} = \boldsymbol{r}_{0}^{h_{0,i}} \cdot \boldsymbol{r}_{1}^{h_{1,i}} \cdot \dots \cdot \boldsymbol{r}_{(m-1)}^{h_{m-1,i}}, i = 0, \dots, N-1,$$
(2.20)

где $h_{0,i}, h_{1,i}, ..., h_{m-1,i}$ – значения разрядов двоичного представления номера строки *j* ($h_{m-1,i}$ – младший разряд).

2.3. Синхронизация МП

Первый способ синхронизации МП предполагает следующую последовательность действий:

1) значения дискретного сигнала X_N , полученные с выхода синфазного или квадратурного канала приемника, переставляются по возрастанию значений элементов мультипликативной группы $\alpha^0_{H_2}, \alpha^1_{H_2} \dots, \alpha^{N-1}_{H_2}$ при любом выбранном $\alpha^0_{H_2}$; то есть значения X_N записываются в запоминающее устройство, причем нулевое значение при их нумерации с нуля – в ячейку памяти с адресом $\alpha^0_{H_2}$, первое – в ячейку с адресом $\alpha^1_{H_2}$ и т.д. при нумерации ячеек памяти от 0 до N; при этом нулевая ячейка памяти останется свободной, так как у мультипликативной группы поля Галуа отсутствует элемент 00...0;

2) в ячейку памяти с номером 0 записывается единица, и производится БПА полученного вектора;

3) считывается номер ячейки і, в которой оказалось наибольшее значение БПА (нулевая ячейка игнорируется); результата таким образом, идентифицируется строка матрицы Адамара, которой преобразован К циклический сдвиг исходной МП;

4) обратное двоичное представление *i*, то есть $h_{m-1,i}h_{m-2,i}...h_{0,i}$ рассматривается как элемент мультипликативной группы поля Галуа, построенного на основе сопровождающей матрицы H_1 используемого полинома при первообразном элементе $\alpha^0_{H_1} = [10...00]^{T}$;

5) определяется номер строки, в которой находится полученная функция Уолша в $W_{m(1,-1)}$, упорядоченной по значениям элементов мультипликативной группы поля Галуа, построенной на основе H_1 (в дальнейшем группы 1), при решении уравнения $H_1^i \alpha^0_{H_1} = [h_{m-1,j}h_{m-2,j} \dots h_{0,j}]^{\mathrm{T}}$ относительно *i*;

6) искомый начальный блок МП вычисляется по формуле: $\boldsymbol{b} = \boldsymbol{H}_2{}^i \boldsymbol{\alpha}^0_{\boldsymbol{H}_2}$.

На практике решение матричного уравнения п.5) и вычисления п.6) можно реализовать с помощью генераторов мультипликативных групп поля Галуа,

формируемых на основе сопровождающих матриц исходного полинома H_1 и H_2 (в дальнейшем группы 1 и группы 2). Для первого из них $\alpha^0_{H_1} = [10 \dots 00]^T$, а для второго первообразный элемент совпадает с $\alpha^0_{H_2}$, с которого начиналась перестановка значений X_N . Когда числа на выходе этих генераторов совпадут, на выходе генератора группы 2 будет искомый начальный блок МП.

Другой вариант этого алгоритма предполагает перестановку содержимого ячеек памяти запоминающего устройства после выполнения БПА в соответствии с последовательностью элементов группы 1. То есть после выполнения п.2) надо запустить генератор этой группы с первообразным элементом $\alpha^0_{H_1} = [10 ... 00]^T$ и переставить содержимое 1-ой ячейки по адресу $\alpha^0_{H_1}$, 2-ой – по адресу $\alpha^1_{H_1}$ и т.д. Затем необходимо определить номер ячейки с максимальным содержимым. Этот номер будет соответствовать искомому начальному блоку МП, содержащейся в значения дискретного сигнала X_N . Найденный начальный блок надо записать в генератор группы 2, с выхода которого будет формироваться опорная МП.

Таким образом, ключевыми элементами устройства синхронизации МП на основе БПА являются генераторы мультипликативных групп поля Галуа. Нетрудно показать, что генераторы группы 1 и группы 2 представляют собой варианты устройства формирования МП [10]. Действительно, учитывая структуры матриц H_1 и H_2 , можно получить рекуррентные соотношения для элементов соответствующих мультипликативных групп:

- для элементов группы 1:

$$\begin{cases} x_{0,i} = a_0 x_{m-1,i-1}, (a_0 = 1), \\ x_{1,i} = x_{0,i-1} \oplus a_1 x_{m-1,i-1}, \\ \dots \\ x_{m-1,i} = x_{m-2,i-1} \oplus a_{m-1} x_{m-1,i-1}; \end{cases}$$
(2.21)

- для элементов группы 2:

$$\begin{cases} x_{0,i} = x_{1,i-1}, \\ x_{1,i} = x_{2,i-1}, \\ \dots \\ x_{m-1,i} = a_0 x_{0,i-1} \bigoplus a_1 x_{1,i-1} \bigoplus \dots \bigoplus a_{m-1} x_{m-1,i-1}. \end{cases}$$
(2.22)

Следуя, традиции рассматривать преобразования в полях Галуа, а также формирователи МП в виде сдвиговых регистров на *D*-триггерах [10,35], представим функциональные схемы генераторов мультипликативных групп 1 и 2 так, как это показано на рисунке 2.1 а) и б).

Как видно, значения элементов групп считываются параллельно с выходов всех триггеров (ячеек памяти) сдвиговых регистров, а с каждого триггера последовательно – МП со сдвигами, соответствующим структуре матрицы H_1 или H_2 . В момент, в который в ячейках памяти генератора группы 2 окажется искомый начальный блок входной МП, последовательность $x_{0,i}, x_{0,i+1}, x_{0,i+2}$... с выхода его триггера D_0 будет формироваться синхронно с ней, если этот генератор, как и генератор группы 1, работает с тактовой частотой входной МП.

Кроме того, необходимо, чтобы длительность времени всех преобразований и операций, описанных выше, была равно нулю, что невозможно. В действительности работа цифрового устройства синхронизации, разработанного с использованием современных микропроцессорных технологий, может осуществляться с максимально достижимой для него скоростью и своей тактовой частотой, и, подчеркнем еще раз, представление в этой работе генераторов мультипликативных групп в виде сдвиговых регистров на *D*-триггерах – лишь дань традиции.

образом, необходимо, Таким во-первых, фиксировать суммарную длительность времени всех выполненных операций, выражая ее в единицах длительности элементарного импульса входной МП, во-вторых, сдвинуть формируемую опорную МП с выхода триггера D_0 генератора группы 2 на соответствующее число элементарных символов; в-третьих, понизить тактовую частоту формируемой опорной МП до частоты входной МП. Таким образом, генератор группы 2 удобно использовать в качестве формирователя опорной МП, синхронной с входной МП, поскольку значения любых *т* элементарных символов формируемой МП, следующих с триггера D_0 , совпадают с символами мультипликативной группы 2, оказавшихся записанными в ячейках памяти его сдвигового регистра в момент появления первого символа из этих *m* символов.

Второй, более простой алгоритм синхронизации МП, соответствует матрице $W_{m(1,-1)}^{T}$: значения X_N надо переставить по возрастанию элементов мультипликативной группы поля Галуа, построенной на основе сопровождающей матрицы полинома вида H_1 , но только лишь при первообразном элементе $\alpha^0_{H_1} = [10 \dots 00]^T$. После выполнения БПА номер ячейки памяти запоминающего устройства, в которой оказалось максимальное значение, представленное в двоичной системе счисления, и будет начальным блоком МП, содержавшейся X_N .

Рисунок 2.1 – Генераторы мультипликативных групп поля Галуа по модулю неприводимого примитивного полинома с коэффициентами $a_0, a_1, ..., a_{m-2}, a_{m-1}$; ГТИ – генератор тактовых импульсов.

Этот начальный блок следует записать в ячейки памяти генератора группы 2, в результате чего опорная МП будет формироваться именно с этого начального блока. Таким образом, в данном случае необходимо использовать как генератор группы 1, так и генератор группы 2.

Подчеркнем, что способ синхронизации МП, основанный на перестановке символов входной МП в соответствии с мультипликативной группой, формируемой на основе матрицы H_1 (более простой алгоритм), предполагает единственный вариант перестановки такого рода, и мультипликативная группа, на основе которой она производится, всегда должна начинаться с $\alpha^0_{H_1} =$ $[10...00]^{T}$. Перестановка в соответствии с той же мультипликативной группой, но с другим первообразным элементом не позволит преобразовать МП к виду функции Уолша. Кроме того, данный подход предполагает, что соответствие между циклическим сдвигом МП и функцией Уолша в матрице Адамара является единственно возможным.

Напротив, перестановка символов МП в соответствии с мультипликативной группой, формируемой на основе матрицы H_2 (более сложный алгоритм), может производиться с любого первообразного элемента $\alpha^0_{H_2}$, в результате чего любой циклический сдвиг входной МП можно привести к любой функции Уолша, но при выбранном $\alpha^0_{H_2}$ – только к одной такой функции. Кроме того, если заранее известен диапазон циклических сдвигов, в пределах которого может находиться сдвиг входной МП, либо несколько ее циклических сдвигов при многолучевом распространении сигнала, то перестановка символов МП в соответствии с мультипликативной группой 2 преобразует их в последовательности Уолша без нулевого символа при их нумерации от нуля, следующие непосредственно друг за другом в матрице из этих функций, упорядоченной в соответствии с мультипликативной группой 1. Тогда, учитывая, что в матрице Адамара сохраняются только эти функции, можно оптимизировать алгоритм БПА, снизив его вычислительную сложность. Другие циклические сдвиги входной МП могут быть приведены к тем же функциям Уолша без нулевого символа при их

нумерации с нуля при выборе $\alpha^0_{H_2}$ группы 2, в соответствии с которой производится перестановка символов.

Таким образом, если известен диапазон возможных циклических сдвигов принимаемой МП, то можно выбрать соответствующее значение $\alpha^0_{H_2}$ и преобразовать ее к одной из нескольких функций Уолша, следующих другом за другом в матрице Адамара. Любой другой циклический сдвиг МП с той же шириной области неопределенности по времени может быть приведен к какой-то функции Уолша из того же их набора при выборе $\alpha^0_{H_2}$. Таким образом, для обнаружения любого циклического сдвига МП можно использовать БПА в одном и том же усеченном базисе функций Уолша-Адамара. Если этот усеченный базис содержит относительно небольшое число функций Уолша, то вычисления в соответствии с п. 5) и 6) могут не потребоваться.

2.4. Алгоритм и структурная схема устройства синхронизации М-последовательностей

Таким образом, в предыдущем параграфе показано, что синхронизация по времени МП сводится к реализации алгоритма обнаружения-различения ее циклических сдвигов. Простая перестановка отсчетов принимаемой МП в соответствии с алгоритмом, описанным в предыдущем разделе, позволяет получить последовательность Уолша, символы которой, представим как векторстроку матрицы $W_{m(1,-1)}$. Как показано, эта ПСП Уолша однозначно соответствует определённому циклическому сдвигу исходной МП, задаваемому ее начальным блоком, длина которого равна *m*. Номер строки *i* в матрице Адамара размерности 2^m, в котором находится полученная ПСП Уолша в матрице $W_{m(1,-1)}$, однозначно связан с кодом начального блока исходной МП.

Квадратную матрицу Адамара можно представить как m-ую кронекеровскую степень матрицы Адамара второго порядка при m = 1. Как известно, при образовании кронекеровского произведения двух матриц каждый

элемент второй матрицы умножается на все элементы первой матрицы; при увеличении числа умножаемых матрицы кронекеровские произведения находятся по аналогичному правилу. Таким образом, если

$$W_{1(1,-1)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix},$$
 (2.23)

то $W_{m(1,-1)} = W_{1(1,-1)}^{m}$. С целью использования быстрого преобразования Адамара для перемножения соответствующей матрицы и любого вектора необходимо использовать свойство факторизации матрицы Адамара, то есть возможность ее представления в виде простого произведения слабо-заполненных матриц [50, 51,52].

После преобразования МП, записанную в виде строки, обозначим ее как X_{np} . Затем преобразуем строку в столбец X_{np}^{T} . После перемножения матрицы $W_{m(1,-1)}$ с этим столбцом получим вектор-столбец, который обозначим как Y. Максимальное значение этого вектора соответствует основному пику автокорреляционной функции (АКФ) МП [11,50]. Номер этого значения при последовательной нумерации элементов вектора-столбца Y соответствует циклическому сдвигу исходной МП. Отметим, что в силу базового свойства периодической АКФ МП, остальные значения элементов вектора Y равны «минус 1».

Таким образом, определение номера циклического сдвига принятой МП Сописывается выражением:

$$C = \max_{i} (\mathbf{Y} = \mathbf{W}_{m(1,-1)} \, \mathbf{X}_{\text{np}}^{T}), \qquad (2.24)$$

где $i = 1, ..., 2^m$ - номер элемента столбца **Y**.

Согласно (2.23), (2.24) алгоритм ускоренного обнаружения МП состоит в умножении столбца из отсчетов входного сигнала на факторизованную матрицу Адамара

$$\boldsymbol{W}_{m(1,-1)} = \boldsymbol{B}_{2^{m}}^{m}, \tag{2.25}$$

где $B_{2^m}^m$ – простая m -я степень матрицы B_{2^m} порядка 2^m . Значения элементов матрицы B_{2^m} определяются в соответствии с теоремой Гуда о факторизации

матриц, представляющих собой кронекеровские степени [48]. Один из вариантов такой матрицы:

$$\boldsymbol{B}_{2^{m}} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & \dots & 1 & 1 \\ 1 & -1 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \dots & 0 & 0 \\ \dots & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots & 1 & -1 \end{bmatrix},$$
(2.26)

Таким образом, учитывая структуру матрицы B_{2^m} и (2.24), получим алгоритм ускоренного обнаружения МП

$$C = max(Y = W_{m(1,-1)}X_{\Pi p}^{T} = B_{2^{m}}^{m-1}Y_{m-1} = B_{2^{m}}[B_{2^{m}} \dots (B_{2^{m}}X_{\Pi p}^{T})]), \quad (2.27)$$

Из (2.27) следует, что на первом этапе реализации данного подхода необходимо вычислить столбец $Y_1 = B_2 {}^m X_{np}^T$. Второй этап предполагает вычисление столбца $Y_2 = B_2 {}^m Y_1$, и т.д. И, наконец, *m*-ый этап предполагает вычисление столбца $Y = Y_m = B_2^{m-1} Y_{m-1}$. Итоговый столбец включает значения ПАКФ принимаемой МП с учетом поправки из-за несоответствия длины МП – длине функции Уолша. Полученный результат можно трактовать как полный список значений взаимно корреляционных функций (ВКФ) ПСП Уолша, каждая из которых рассчитана в одной точке, то есть при отсутствии сдвигов по времени. Одно из них соответствует АКФ. Как известно, ПСП Уолша являются ортогональными в точке, то есть все полученные значения равны нулю, кроме одного.

Процедуры вычисления столбцов $Y_1, Y_2, ..., Y_m$ одинаковы, и описываются элементарным графом с учетом алгоритма факторизации матрицы Адамара. Из его анализа следует, что для определения элементов столбца Y вначале принимаемую МП необходимо преобразовать в ПСП Уолша и записать ее символы в оперативном запоминающем устройстве (ОЗУ). Затем на этапе вычисления Y_1 необходимо суммировать и вычитать значения символов ПСП Уолша, записанных в соседние ячейки памяти ОЗУ, т.е. в 1-ю и 2-ю ячейки, в 3-ю и 4-ю ячейки, в 5-ю и 6-ю ячейки и т.д. с использованием подключенного к ОЗУ арифметического устройства (АУ). Затем результаты суммирования и вычитания символов ПСП Уолша вновь необходимо записать в ОЗУ. Причем суммы символов записываются в ячейки памяти с номерами от 0-го до 2^{m-1} -го, а разности тех же символов записываются в ячейки памяти ОЗУ с номерами от $(2^{m-1} + 1)$ -го до 2^m -го. При вычислении $Y_2, ..., Y_m$ всякий раз используются операции, примененные при вычислении Y_1 . В результате определяем элементы вектора $Y_m = Y$, у которых один из элементов равен значению основного пика АКФ ПСП Уолша, соответствующей принимаемой МП, а остальные элементы Yсоответствуют значениям пиков ВКФ этой ПСП Уолша и строк матрицы Адамара при отсутствии их относительных временных смещений.

На рисунке 2.2 приводится структурная схема устройства поиска шумоподобного сигнала, реализующая вышеописанный алгоритм его работы. После перевода на видеочастоту отсчеты МП и шума с выхода АЦП записываются в ОЗУ. При этом каждый отсчет записывается в ячейку с номером, значение которого совпадает значением Галуа, co элемента поля вырабатываемого генератором этого поля (ГПГ), соответствующего группе 1 или группе 2, и подключенного к адресным шинам ввода-вывода ОЗУ с помощью ключа-коммутатора К1. В блок ГПГ входят генераторы как группы 1, так и группы 2, с помощью которых в РУ принимается решение о сдвиге по времени принимаемой МП.

Рисунок 2.2 – Устройство ускоренного синхронизации МП.

Таким образом, в соответствии с вышеописанным алгоритмом в результате в ОЗУ будет записана ПСП Уолша. Ее номер в упорядоченной записи этих ПСП в виде, например, матрицы Адамара, не известен, как и неизвестна ее структура. С целью идентификации номера ПСП Уолша в матрице Адамара необходимо ускоренно перемножить эту матрицу и полученную аддитивную смесь шума неизвестной ПСП Уолша. С этой целью с помощью коммутатора К1 отключается ГПГ от ОЗУ и подключается счетчик (СЧ). При этом с помощью ключа К2 к шине данных ОЗУ подключается АУ, в котором осуществляется попарное суммирование и вычитание значений, записанных в ОЗУ. Результаты вновь записываются в ОЗУ в освободившиеся ячейки памяти.

В соответствии с алгоритмом, соответствующим (2.26), (2.27), после *т*-го повторения данной процедуры в ОЗУ будет записана определенным образом циклически сдвинутая АКФ МП, просуммированная с отсчетами результата некогерентного накопления шумовой помехи. При этом положение максимального пика АКФ не известно. Номер ячейки памяти, в котором окажется записанным основной пик АКФ и определит циклический сдвиг исходной МП начиная с момента начала ее записи в ОЗУ. Затем коммутатор К2 подключает РУ, которое сравнивает значения, записанные в ОЗУ, и выбирает номер ячейки, в которую было записано максимальное значение. Взаимосвязь номера этой ячейки и начального блока МП, с которого началась запись ее отсчетов в ОЗУ, описана в предыдущем параграфе.

Далее, необходимо учесть время расчета АКФ и то обстоятельство, что за это время исходная МП уже сдвинулась по времени и на входе приемника будет уже другой начальный блок МП. Последний может быть определен с определенной погрешностью, зависящей как от быстродействия сигнального процессора, использующегося для разработки данного устройства, так и от скорости передачи элементарных символов МП. Величина погрешности будет равна некоторому неизвестному числу элементарных символов МП. Таким образом, необходимо дополнительное устройство, являющееся последовательным или параллельным коррелятором. В качестве генератора опорной МП очевидно может использоваться ГПГ при подаче сигнала с одной из ячеек его циклической памяти [7]. Этот коррелятор, который одновременно может использоваться и в качестве схемы подтверждения (СхП), состоит из ГПГ и накопителя цифрового (НЦ). Таким образом, можно реализовать последовательный корреляционный поиск в пределах области неопределенности принимаемой МП. Синхронность принимаемой о опорной МП подтверждается с помощью РУ.

2.5. Построение матрицы-циркулянта ПСП Голда

Голда Матрицы-циркулянты последовательностей получим путем суммирования по модулю два матриц $\mathfrak{T}_{m,2,\mu}$ (см. [3]) двух так называемых предпочтительных МП [4,31,32]. Пусть на основе сопровождающей матрицы **H**₂ первого предпочтительного полинома и первообразного элемента $\alpha^{0}_{1H_{2}}$ построена матрица-циркулянт МП $a_{a_{1H_2}}^{1} \mathfrak{T}_{m,2,\mu}$, а на основе матрицы H_2 , но второго предпочтительного полинома и первообразного элемента $\alpha^{0+z}{}_{2H_2}$ - $\alpha^{0+z}{}_{_{2H_{2}}}^{2}\mathfrak{S}_{m,2,\mathfrak{U}}.$ Тогда матрицы-циркулянты матрица всего набора последовательностей Голда, соответствующих этим двум предпочтительным МП, кроме них самих, можно описать как:

$$\mathbf{\mathfrak{S}}_{m,2,\mathrm{II},g}(z) = {}_{\boldsymbol{\alpha}^0}{}_{{}_{1\boldsymbol{H}_2}}{}^1 \mathbf{\mathfrak{S}}_{m,2,\mathrm{II}} \oplus {}_{\boldsymbol{\alpha}^{0+z}}{}_{{}_{2\boldsymbol{H}_2}}{}^2 \mathbf{\mathfrak{S}}_{m,2,\mathrm{II}}, z = 0, \dots N-1, \qquad (2.28)$$

где ⊕ - обозначение операции суммирования по модулю 2.

В качестве примера матрица-циркулянт кода Голда, построенного на основе полиномов $f_5(x) = x^5 + x^4 + x^2 + x + 1$ и $f_5(x) = x^5 + x^3 + 1$ при $\alpha^0_{1H_2} = \alpha^0_{2H_2} = [1\ 0\ 0\ 0\ 0]^{T}$ и z = 0 приведена в таблице 2.7. Как видно, она является упорядоченной, то есть каждая ее последующая строка циклически сдвинута на один символ, по сравнению с предыдущей (см. [3]).

На рисунке 2.3 представлена периодическая взаимно корреляционная функция (ПВКФ) [4] $\chi_{\Pi B K \Phi}(i)$ этой ПСП Голда и МП, сформированной на основе второго из двух вышеуказанных полиномов. Значения ПВКФ при отрицательных *i* получены при зеркальном отображении графика относительно оси ординат.

Рисунок 2.3 – ПВКФ кода Голда.

Таким образом, матрица, приведенная в таблице 2.7, соответствует последовательности Голда, поскольку получена трехуровневая ПВКФ.

Упорядоченная матрица-циркулянт кода Голда при выбранных значениях $\pmb{\alpha}^{0}_{1H_{2}}, \pmb{\alpha}^{0}_{2H_{2}}$ и *z* имеет следующий вид:

$$\mathbf{\mathfrak{T}}_{m,2,\mathfrak{u},g}(z) = \begin{bmatrix} \mathbf{\mathfrak{T}}_{m,2}^{1} \oplus \mathbf{\mathfrak{T}}_{m,2}^{2} \\ H_{21}^{m} \mathbf{\mathfrak{T}}_{m,2}^{1} \oplus H_{22}^{m} \mathbf{\mathfrak{T}}_{m,2}^{2} \\ H_{21}^{2m} \mathbf{\mathfrak{T}}_{m,2}^{1} \oplus H_{22}^{2m} \mathbf{\mathfrak{T}}_{m,2}^{2} \\ \dots \\ H_{21}^{C(N)m} \mathbf{\mathfrak{T}}_{m,2}^{1} \oplus H_{22}^{C(N)m} \mathbf{\mathfrak{T}}_{m,2}^{2} \end{bmatrix}, \qquad (2.29)$$

где $\mathbf{\mathfrak{T}}_{m,2}^{1}$ – матрица из *т* циклических сдвигов первой предпочтительной МП, построенная на основе сопровождающей матрицы H_{21} ее неприводимого примитивного полинома, $\mathbf{\mathfrak{T}}_{m,2}^{2}$ – соответствующая матрица для второй предпочтительной МП, построенная на основе сопровождающей матрицы H_{22} ее неприводимого примитивного полинома. В индексах обозначений сопровождающих матриц H_{21} и H_{22} первый символ 2 указывает на то, что рассматриваются матрицы вида H_{2} , а второй символ 1 или 2 – на отношение матрицы к первому или второму предпочтительному полиному.

Очевидно, что столбцы первых *m* строк матрицы (2.29) представляют собой суммы степеней первообразных элементов двух мультипликативных групп, то есть

$$\mathbf{\mathfrak{S}}_{m,2}{}^{1} \oplus \mathbf{\mathfrak{S}}_{m,2}{}^{2} = \boldsymbol{\alpha}^{k}{}_{1\boldsymbol{H}_{2}} + \boldsymbol{\alpha}^{k}{}_{2\boldsymbol{H}_{2}}, k = 0, \dots, N-1, \qquad (2.30)$$

и значения $[\alpha_{1H_2}^k + \alpha_{2H_2}^k]_{10}$ могут совпадать для разных *k*. Кроме того, в (2.29) возможно появление элементов, состоящих лишь из нулей, то есть сумма изоморфных максимальных мультипликативных групп двух разных полей Галуа не образует мультипликативную группу.

Таблица 2.7. Матрица-циркулянт кода Голда, соответствующая предпочтительным полиномам $f_5(x) = x^5 + x^4 + x^2 + x + 1$ и $f_5(x) = x^5 + x^3 + 1$ при $\boldsymbol{\alpha}^0_{1H_2} = \boldsymbol{\alpha}^0_{2H_2} = [1\ 0\ 0\ 0\ 0]^{\mathrm{T}}$ и z = 0.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	
$[\alpha^{k}_{1H2} + \alpha^{k}_{2H2}]_{10}$	0	0	1	2	4	8	16	1	2	5	11	23	15	30	29	27	23	15	30	28	24	16	0	1	2	4	9	18	4	8	16	i
$x_{1,0,k} \oplus x_{2,0,k}$	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0
$x_{1,1,k} \oplus x_{2,1,k}$	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	1
$x_{1,2,k} \oplus x_{2,2,k}$	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	2
$x_{1,3,k} \oplus x_{2,3,k}$	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	3
$x_{1,4,k} \oplus x_{2,4,k}$	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	4
$x_{1,5,k} \oplus x_{2,5,k}$	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	5
$x_{1,6,k} \oplus x_{2,6,k}$	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	6
$x_{1,7,k} \oplus x_{2,7,k}$	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	7
$x_{1,8,k} \oplus x_{2,8,k}$	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	8
$x_{1,9,k} \oplus x_{2,9,k}$	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	9
$x_{1,10,k} \oplus x_{2,10,k}$	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	10
$x_{1,11,k} \oplus x_{2,11,k}$	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	11
$x_{1,12,k} \oplus x_{2,12,k}$	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	12
$x_{1,13,k} \oplus x_{2,13,k}$	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	13
$x_{1,14,k} \oplus x_{2,14,k}$	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	14
$x_{1,15,k} \oplus x_{2,15,k}$	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	15
$x_{1,16,k} \oplus x_{2,16,k}$	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	16
$x_{1,17,k} \oplus x_{2,17,k}$	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	17
$x_{1,18,k} \oplus x_{2,18,k}$	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	18
$x_{1,19,k} \oplus x_{2,19,k}$	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	19
$x_{1,20,k} \oplus x_{2,20,k}$	1	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	20
$x_{1,21,k} \oplus x_{2,21,k}$	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	21
$x_{1,22,k} \oplus x_{2,22,k}$	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	22
$x_{1,23,k} \oplus x_{2,23,k}$	0	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	23
$x_{1,24,k} \oplus x_{2,24,k}$	0	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	24
$x_{1,25,k} \oplus x_{2,25,k}$	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	25
$x_{1,26,k} \oplus x_{2,26,k}$	0	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	26
$x_{1,27,k} \oplus x_{2,27,k}$	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	27
$x_{1,28,k} \oplus x_{2,28,k}$	0	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	28
$x_{1,29,k} \oplus x_{2,29,k}$	0	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	29
$x_{1,30,k} \oplus x_{2,30,k}$	1	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	30
$x_{1,31,k} \oplus x_{2,31,k}$	0	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0
$x_{1,32,k} \oplus x_{2,32,k}$	0	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	1
$x_{1,33,k} \oplus x_{2,33,k}$	0	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	2
X1241 @ X2241	0	0	0	1	0	0	0	0	1	0	1	1	1	1	0	1	1	1	1	0	0	0	0	0	1	0	0	1	0	0	0	3

2.6. Преобразование матрицы-циркулянта ПСП Голда к аналогам функций Радемахера

Преобразовав символы $\alpha^{k}{}_{1H_{2}} + \alpha^{k}{}_{2H_{2}}$ по правилу $0 \rightarrow 1, 1 \rightarrow -1$ и переставив столбцы (2.8) по возрастанию $[\alpha^{k}{}_{1H_{2}} + \alpha^{k}{}_{2H_{2}}]_{10}$, одновременно суммируя одинаковые их значения и заменяя отсутствующие элементы нулями, получим функции, у которых имеются символы, отличные от 1 или -1, а также символы с нулевыми значениями. Так, переставляя в соответствии с данным правилом столбцы матрицы, приведенной в таблице 2.7, получим матрицу, записанную в строках таблицы 2.8.

Как видно, половина символов преобразованной матрицы, записанных в ее второй строке, положительные или нули, половина отрицательные или нули, в третьей строке первые 8 символов положительные или нули, потом следуют 8 отрицательных или нулевых символов, потом опять 8 положительных, потом 8 To отрицательных И т.д. есть первые m строк матрицы-циркулянта последовательности Голда, преобразованные по вышеописанному правилу, являются аналогами функций Радемахера [48] (обозначим их как r_{ia} , где i =0, ..., (m-1) – номер функции), но остальные строки исходной матрицыциркулянта не приводятся к аналогам функций Уолша без нулевого символа при их нумерации с нуля. Обозначим их как r'_i , где i = m, ..., (C(N) + 1)m - 1), $C(N) = \left(\frac{A(N)}{m}\right) - 1, A(N) -$ число, максимально близкое к *N*, делящееся нацело на m и удовлетворяющее неравенству A(N) > N [3].

Но функции r'_i могут быть приведены к аналогам функций Радемахера при выборе соответствующих первообразных элементов мультипликативных групп. То есть выбрав $\alpha^0{}_{1H_2}$ и $\alpha^0{}_{2H_2}$ и переставив столбцы матрицы-циркулянта кода Голда по возрастанию $[\alpha^k{}_{1H_2} + \alpha^k{}_{2H_2}]_{10}$, преобразуем первые ее m строк к матрице аналогов функций Радемахера. Но если столбцы этой матрицы переставлять начиная с элемента $\alpha^m{}_{1H_2} + \alpha^m{}_{2H_2}$, то к аналогам функций Радемахера преобразуются вторые *m* строк матрицы-циркулянта кода Голда. При перестановке начиная с $\alpha^{2m}_{1H_2} + \alpha^{2m}_{2H_2}$ преобразуем следующие *m* строк и т.д.

Таблица 2.8. Результат преобразования матрицы-циркулянта кода Голда по возрастанию значений суммы мультипликативных групп.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	i
r_{0a}	3	3	3	0	3	1	0	0	2	1	0	1	0	0	0	2	-3	0	-1	0	0	0	0	-2	-1	0	0	-1	-1	-1	-2	0
\boldsymbol{r}_{1a}	3	3	3	0	3	1	0	0	-2	-1	0	-1	0	0	0	-2	3	0	1	0	0	0	0	2	-1	0	0	-1	-1	-1	-2	1
r _{2a}	3	3	3	0	-3	-1	0	0	2	1	0	1	0	0	0	-2	3	0	1	0	0	0	0	-2	1	0	0	1	-1	-1	-2	2
r 3a	3	3	-3	0	3	1	0	0	2	1	0	-1	0	0	0	-2	3	0	-1	0	0	0	0	-2	1	0	0	-1	1	1	-2	3
r_{4a}	3	-3	3	0	3	-1	0	0	2	-1	0	-1	0	0	0	-2	3	0	1	0	0	0	0	-2	1	0	0	-1	1	-1	2	4
r' 5	-1	3	1	0	1	-1	0	0	2	1	0	-1	0	0	0	2	1	0	1	0	0	0	0	-2	1	0	0	-1	1	-1	0	5
r ′ ₆	1	1	-1	0	3	-1	0	0	0	1	0	-1	0	0	0	0	1	0	1	0	0	0	0	2	1	0	0	-1	1	-1	0	6
r' 7	3	-1	1	0	1	-1	0	0	2	1	0	1	0	0	0	0	-1	0	1	0	0	0	0	0	-1	0	0	1	1	-1	0	7
<i>r</i> ′ ₈	1	1	-1	0	3	1	0	0	-2	1	0	-1	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	-1	1	0	8
r ′ ₉	3	-1	3	0	-1	-1	0	0	0	1	0	-1	0	0	0	0	-1	0	1	0	0	0	0	0	1	0	0	1	1	1	0	9
<i>r</i> ′ 10	1	3	-1	0	1	-1	0	0	0	1	0	-1	0	0	0	0	1	0	-1	0	0	0	0	0	-1	0	0	1	1	1	2	10
<i>r</i> ′ 11	1	-1	-1	0	1	-1	0	0	0	-1	0	-1	0	0	0	2	3	0	1	0	0	0	0	0	1	0	0	1	-1	1	2	11
r' ₁₂	1	-1	-1	0	-1	-1	0	0	2	1	0	1	0	0	0	2	-1	0	1	0	0	0	0	2	1	0	0	-1	1	1	0	12
r' 13	-1	-1	-3	0	3	1	0	0	-2	1	0	1	0	0	0	0	1	0	1	0	0	0	0	2	1	0	0	1	1	-1	2	13
<i>r</i> ′ 14	-1	-3	3	0	-1	1	0	0	0	1	0	1	0	0	0	2	-1	0	1	0	0	0	0	0	1	0	0	1	1	1	0	14
r' 15	-3	3	1	0	1	1	0	0	-2	1	0	1	0	0	0	0	-1	0	-1	0	0	0	0	2	1	0	0	-1	1	1	2	15
<i>r</i> ′ 16	1	1	1	0	-1	1	0	0	-2	-1	0	1	0	0	0	2	-1	0	1	0	0	0	0	0	1	0	0	1	1	-1	2	16
<i>r</i> ′ ₁₇	1	1	1	0	-3	1	0	0	0	1	0	-1	0	0	0	2	1	0	-1	0	0	0	0	2	-1	0	0	1	1	1	0	17
<i>r</i> ′ 18	-1	1	-1	0	1	-1	0	0	0	-1	0	1	0	0	0	0	3	0	-1	0	0	0	0	2	1	0	0	1	-1	1	2	18
r' 19	-1	-1	1	0	-1	1	0	0	2	-1	0	1	0	0	0	2	1	0	-1	0	0	0	0	0	1	0	0	1	1	1	0	19
r' 20	-3	1	1	0	1	1	0	0	0	-1	0	-1	0	0	0	0	1	0	-1	0	0	0	0	2	1	0	0	1	1	1	2	20
r' 21	1	1	1	0	-1	-1	0	0	0	-1	0	1	0	0	0	2	-3	0	1	0	0	0	0	0	1	0	0	1	1	1	2	21
r' 22	1	1	-1	0	-1	1	0	0	-2	1	0	1	0	0	0	2	1	0	-1	0	0	0	0	2	-1	0	0	-1	1	1	2	22
r' 23	1	-1	1	0	-1	1	0	0	0	-1	0	1	0	0	0	2	1	0	-1	0	0	0	0	2	1	0	0	1	-1	-1	2	23
r' 24	1	1	1	0	-1	1	0	0	2	-1	0	1	0	0	0	2	-1	0	-1	0	0	0	0	2	-1	0	0	1	1	1	-2	24
r' 25	1	1	1	0	1	1	0	0	0	-1	0	1	0	0	0	-2	1	0	-1	0	0	0	0	2	-1	0	0	1	-1	1	2	25
r' 26	1	1	1	0	-1	1	0	0	2	-1	0	1	0	0	0	2	1	0	1	0	0	0	0	-2	-1	0	0	1	-1	1	0	26
r' 27	-1	1	-1	0	1	1	0	0	2	1	0	-1	0	0	0	0	3	0	1	0	0	0	0	2	-1	0	0	-1	-1	1	0	27
<i>r</i> ′ 28	1	-1	1	0	3	-1	0	0	2	1	0	1	0	0	0	0	-1	0	1	0	0	0	0	0	1	0	0	1	-1	-1	0	28
r' 29	-1	1	1	0	3	1	0	0	0	1	0	1	0	0	0	0	1	0	1	0	0	0	0	0	-1	0	0	-1	1	1	-2	29
r' 30	-1	1	3	0	1	1	0	0	2	1	0	1	0	0	0	-2	1	0	1	0	0	0	0	0	-1	0	0	-1	-1	-1	2	30
r_{0a}	3	3	3	0	3	1	0	0	2	1	0	1	0	0	0	2	-3	0	-1	0	0	0	0	-2	-1	0	0	-1	-1	-1	-2	0
\boldsymbol{r}_{1a}	3	3	3	0	3	1	0	0	-2	-1	0	-1	0	0	0	-2	3	0	1	0	0	0	0	2	-1	0	0	-1	-1	-1	-2	1
r _{2a}	3	3	3	0	-3	-1	0	0	2	1	0	1	0	0	0	-2	3	0	1	0	0	0	0	-2	1	0	0	1	-1	-1	-2	2
r 3a	3	3	-3	0	3	1	0	0	2	1	0	-1	0	0	0	-2	3	0	-1	0	0	0	0	-2	1	0	0	-1	1	1	-2	3

Данный подход к приведению циклических сдвигов кода Голда к аналогам функций Радемахера имеет смысл только в том случае, если существует ускоренный алгоритм умножения матрицы функций Радемахера на вектор, вычислительная сложность которого соответствует числу элементарных математических операций, значимо меньшему mN, поскольку именно такая сложность соответствует умножению матрицы размером $m \times N$ на столбец.

2.7. Быстрый алгоритм синхронизации ПСП Голда

Данный алгоритм фактически сводится к ускоренному перемножению матрицы функций Радемахера и преобразованной ПСП Голда. Он описан в разделе 1 настоящей диссертации.

Как видно, при m = 5 выигрыш в числе элементарных арифметических операция составляет примерно 1.84, по сравнению с простым умножением метрицы на вектор, но при типичных длинах ПСП, использующихся при построении, например, навигационных кодов, он более существенный – при N = 511 (m = 9) выигрыш составляет 3 раза, а при N = 1023 (m = 10) - 3,4 раза. Подчеркнем, что на рисунке 1.9 приводится выигрыш в числе арифметических операций при ускоренном перемножении матрицы функций Радемахера и вектора, по сравнению с простым перемножением. Для того, чтобы не разрывать график, показаны значения выигрыша при m = 8,12 и 16, хотя ПСП Голда при таких значениях m не существует [32].

Таким образом, предлагаемый алгоритм синхронизации последовательностей Голда на основе БПА при заданном циклическом сдвиге предпочтительных МП *z* состоит в следующем:

1) с целью обеспечения возможности синхронизации всего набора последовательностей Голда, для формирования которых используется данная пара предпочтительных МП, выбрать $\alpha^{0}_{1H_{2}}$ и $\alpha^{0}_{2H_{2}}$ мультипликативных групп их полей Галуа и найти суммы $\alpha^{k}_{1H_{2}} + \alpha^{k(z)}_{2H_{2}}$, где k(z) = k + z при $k + z \le N$ и k(z) = k + z - N при k + z > N, k = 0, ..., N - 1;

2) переставить значения входного дискретного сигнала X_N , содержащего последовательность Голда с неизвестным циклическим сдвигом, по возрастанию значений $\left[\alpha_{1H_2}^k + \alpha_{2H_2}^{k(z)} \right]_{10}$, записывая эти символы в ячейки памяти с

соответствующими номерами; если адреса записи разных символов совпадают, то они записываются в одну и ту же ячейку и суммируются; элементы $[\alpha^{k}{}_{1H_{2}} + \alpha^{k(z)}{}_{2H_{2}}]_{10}$, состоящие лишь из нулей, определяют запись символа входного кода в нулевую ячейку и суммирование с ранее записанными в нее символами; содержимое ячеек, оставшихся пустыми, обнуляется;

3) полученный вектор, значения символов которого записаны в запоминающее устройство, ускоренно перемножается с матрицей функций Радемахера; полученные *m* значений результата перемножения соответствуют *m* значениям ПАКФ последовательности Голда;

4) для идентификации основного пика ПАКФ в данном случае целесообразно использовать пороговый алгоритм; если этот пик оказался среди полученных значений ПАКФ – процедура синхронизации завершается; если нет – выполняется следующий пункт;

5) значения X_N вновь переставляются по правилу, описанному выше, но уже по возрастанию значений $[\alpha^{k+m}{}_{1H_2} + \alpha^{k(z)+m}{}_{2H_2}]_{10}$; после перемножения полученного вектора с матрицей функций Радемахера, получаем следующие *m* значений ПАКФ последовательности Голда и т.д.

6) для синхронизации другой последовательности Голда надо изменить значение z = 0, ... N - 1.

В соответствии с вышеописанным алгоритмом была вычислена ПАКФ ПСП Голда, матрица-циркулянт которого приведена в таблице 2.7. Соответствующий график приведен на рисунке 2.4, а на рисунке 2.5 показана ПАКФ этой ПСП Голда, полученная при простом перемножении ее матрицы-циркулянта с ее первой строкой, транспонированной в столбец.

Незначительное отличие ПАКФ одной и той же последовательности, вычисленных разными способами, объясняется разными значениями длины ПСП Голда и функции Радемахера-Уолша. Появление дополнительных основных пиков на рисунке 1.9 по бокам основного пика объясняется отличием размерности матрицы-циркулянта ПСП Голда и матрицы Адамара.

Рисунок 2.4 – Результат ускоренного вычисления ПАКФ кода Голда (*m* = 5)

Рисунок 2.5 – ПАКФ кода Голда (*m* = 5)

Таким образом, при традиционном способе вычисления ПАКФ необходимо последовательно сдвигать опорную ПСП относительно значений принимаемого дискретного сигнала на один символ с последующим вычислением одного значения ПАКФ, для чего потребуется *N* операций перемножения с накоплением.

В результате вычисление всей ПАКФ потребует N сдвигов опорной ПСП принимаемого сигнала и N² операций перемножения относительно С накоплением. В предлагаемом алгоритме число перестановок символов последовательности равно $\frac{A(N)}{m}$, и после каждой их них вычисляется сразу mзначений ПАКФ с существенно меньшим числом элементарных операций суммирования, чем при вычислении *т* значений ПАКФ традиционным способом. Выигрыш в числе арифметических операций предлагаемого алгоритма, по сравнению с традиционным, в зависимости от значения т соответствует графику, приведенному на рисунке 1.9. Отметим, что правило перестановки входного дискретного сигнала задается тем же генератором символов последовательности Голда, который используется и при формировании опорного сигнала в традиционном алгоритме вычисления ПАКФ.

2.8. Устройство ускоренной синхронизации ПСП Голда

Отличие данного устройства от приведенного на рисунке 2.2 состоит в том, что для записи отсчетов входного сигнала в ОЗУ используется генератор $\alpha^{k}_{1H_{2}}$ + $\alpha^{k}_{2H_{2}}$. Кроме того, перед каждой записью в ячейку ОЗУ ее содержимое суммируется с записываемым новым значением со входа приемника. Соответствующая структурная схема устройства приводится на рисунке 2.6.

Рассмотрим генератор последовательности $\alpha^{k}{}_{1H_{2}} + \alpha^{k}{}_{2H_{2}}$. Он соответствует варианту генератора кода Голда. Получив рекуррентные соотношения для элементов кода Голда представим генератор $\alpha^{k}{}_{1H_{2}} + \alpha^{k}{}_{2H_{2}}$ так, как это показано на рисунке 2.7. Эта последовательность следует с выходов сумматоров элементов МП $x_{0,i+z}^{1} \oplus x_{0,i+z}^{2}$.

Каждые подряд следующие *m* символов представляют собой элемент последовательности $\alpha^{k}_{1H_2} + \alpha^{k}_{2H_2}$. При этом последовательность Голда следует с любого из этих сумматоров. Для изменения значения *z* необходимо ввести

другой первообразный элемент любого из поле Галуа, использующихся для формирования последовательности $\alpha^{k}{}_{1H_{2}} + \alpha^{k}{}_{2H_{2}}$.

Рисунок 2.6 – Устройство синхронизации ПСП Голда

Рисунок 2.7 – Генератор последовательности $\alpha^{k}_{1H_{2}} + \alpha^{k}_{2H_{2}}$.

Выводы по разделу 2

1. Алгоритм перестановки значений дискретного сигнала при его функций Уолша, преобразовании К строке матрицы a также способ идентификации циклического сдвига соответствующей ПСП после выполнения БПА, зависят от выбора структуры матрицы-циркулянта этой ПСП.

2. Матрица-циркулянт МП, строки которой начинаются с блоков двоичных символов, соответствующих десятичным номерам этих строк при их двоичнодесятичном кодировании, может быть приведена к матрице Адамара без нулевых строки и столбца при их нумерации от нуля путем перестановки столбцов матрицы в соответствии со значениями единственной мультипликативной группы расширенного поля Галуа. Способ формирования этой группы соответствует рисунок. 2.1 а) и виду H_1 сопровождающей матрицы исходного неприводимого примитивного полинома, и только при значении первообразного элемента этой группы $\alpha^0_{H_1} = [10 \dots 00]^{T}$.

3. Любая из *N* упорядоченных матриц-циркулянтов МП может быть приведена к матрице из функций Уолша, упорядоченной по степеням мультипликативной группы расширенного поля Галуа, где *N* - длина МП. В этом случае перестановка столбцов матрицы-циркулянта должна производиться по возрастанию значений элементов мультипликативной группы поля Галуа, соответствующей виду матрицы H_2 . При этом любой циклический сдвиг МП может быть приведен к любой функции Уолша без нулевого символа при их нумерации от нуля в зависимости от выбора первообразного элемента $a^0_{H_2}$ данной группы, который и определяет структуру матрицы-циркулянта. Но при данном значении $a^0_{H_2}$ соответствие между преобразуемым циклическим сдвигом МП и функцией Уолша без нулевого символа при их нумерации от нуля является взаимно однозначным. Таким образом, все возможные матрицы-циркулянты МП, каждая последующая строка которой сдвинута циклически относительно предыдущей строки на один символ, приводятся к одной и той же матрице функций Уолша без нулевых символов при их нумерации от нуля, упорядоченной по степеням элементов мультипликативной группы поля Галуа с первообразным элементом $\alpha^0_{H_1} = [1\ 0\ ...\ 0\ 0]^{\text{T}}$, соответствующей сопровождающей матрице полинома вида H_1 , Отметим также важное свойство данного преобразования матриц: если при выбранном $\alpha^0_{H_2}$, определяющем структуру матрицыциркулянта со строками, упорядоченными по циклическим сдвигам МП, некоторая ее *i*-я строка приводится к *u*-ой строке матрице функций Уолша без нулевого символа при их нумерации от нуля, то при выборе в качестве первообразного элемента $\alpha^{0+l}_{H_2}$ эта же строка матрицы-циркулянта приводится к (u+l)-ой строке матрице функций Уолша.

4. Матрица Адамара может быть получена из матрицы функций Уолша, упорядоченной по степеням максимальной мультипликативной группы поля Галуа, путем перестановки ее строк по возрастанию значений элементов этой группы и добавлением нулевой строки и нулевого столбца при их нумерации от нуля.

5. Любой из способов преобразования МП в соответствии с правилами, описанными в п.2 и 3 позволяет привести ее к функции Уолша без нулевого символа при их нумерации от нуля, а последующее добавление к ней этого символа и преобразование полученного вектора с помощью БПА - быстро вычислить ПАКФ МП с поправкой на разницу в длинах МП и последовательностей Уолша; выигрыш по вычислительной сложности будет в *N/m* раз, по сравнению с традиционным алгоритмом вычисления дискретной свертки МП.

6. Первые m строк любой упорядоченной матрицы-циркулянта последовательности Голда могут быть приведены к аналогам функций Радемахера путем перестановки ее столбцов по возрастанию значений суммы максимальных мультипликативных групп двух предпочтительных неприводимых примитивных полиномов, на основании которых построен данный код. При этом структура групп определяется сопровождающими матрицами предпочтительных полиномов вида H_2 . При сдвиге первообразных элементов суммируемых мультипликативных групп на m элементов - следующие m строк исходной

матрицы приводятся к функциям Радемахера, при сдвиге на 2*m* элементов – следующие и т.д.

7. Преобразование последовательности Голда в соответствии с п.6 данного раздела позволяет быстро вычислить его ПАКФ с помощью БПА в усеченном базисе функций Уолша-Адамара, причем выигрыш по числу элементарных операций в зависимости от длины ПСП $N = 2^m - 1$ соответствует рисунке 1.9, по сравнению с корреляционным алгоритмом.

3. ВЗАИМОДЕЙСТВИЕ УСТРОЙСТВ ОБНАРУЖЕНИЯ СЛС И СЛЕЖЕНИЯ ЗА ИХ ЧАСТОТАМИ И ЗАДЕРЖКАМИ ПО ВРЕМЕНИ (НА ПРИМЕРЕ СПУТНИКОВОЙ РАДИОСИСТЕМЫ)

3.1. Общие принципы построения канала синхронизации в спутниковой радиосистеме

Оценка параметров частоты И задержки по времени сигналов осуществляется как правило в канале синхронизации (КС) либо по специальным синхросигналам (СИНХ), либо по информационным сигналам (ИНФ) цифровой системы передачи информации. В случае шумоподобных СлС СИНХ излучаются как правило общей полосе частот с ИНФ и формируются на основе периодически повторяющихся ПСП [5,53,54-56]. Распределение мощности радиоканала между СИНХ и ИНФ может оптимизироваться при учете общей эффективности радиосистемы [45,57]. В этом случае ИНФ, передаваемые с СИНХ в общей полосе частот, могут рассматриваться как дополнительные шумовые помехи, существенно превосходящие по мощности полезный СлС, являющийся СИНХ. Во многих случаях, например, в спутниковых радионавигационных системах, ИНФ отсутствует, и в канале связи фактически передаются только периодические СИНХ [45,58]. Результаты данного раздела опубликованы автором данной диссертации в [1,44].

Отметим, что часть КС, состоящая из набора Кор или СФ и энергетического накопителя, может работать и по более мощным, по сравнению с СИНХ, ИНФ, поскольку в цифровом канале связи набор последних всегда ограничен, и они всегда повторяются во времени, но ФАПЧ и АПВ могут работать только по СИНХ [5].

В дальнейшем будем рассматривать в качестве СИНХ периодические двоичные фазоманипулированные (ФМн) СлС, описывающиеся на длительности периода их повторения *T_s*как

$$s(t) = \sum_{i=0}^{N_{3}-1} d_{i} S_{0}(t - iT_{3}) \cos(2\pi f_{0}t), \qquad (3.1)$$
где N_3 – период повторения двоичной ПСП, $d_i \in \{-1,1\}$ – ее элементарные символы, $i = 1, ..., N_3$ – номер символа ПСП, $S_0(t)$ - функция формы элементарного импульса СИНХ длительностью T_3, f_0 – его несущая частота.

Ширина полосы частот, занимаемой радиосистемой с шумоподбными СлС, приблизительно равна их тактовой частоте $f_T = 1/T_3$, и может составлять от единиц до десятков, а в перспективе сотен МГц в разных спутниковых радиосистемах. Поэтому рассмотрим и более сложный вариант шумоподобных СлС, когда для их формирования используются составные ПСП. При этом основная ПСП является двоичной, но за длительность времени T_s частота соответствующего двоичного ФМн СлС многократно перескакивает по закону модулирующей многозначной ПСП на одну из частотных позиций. Таким образом, рассматриваются СлС с дискретной перестройкой рабочей частоты без разрыва ее фазы при фазовой манипуляции этой частоты. В дальнейшем будем называть их дискретными частотными сигналами с фазовой манипуляцией (ДСЧ-ФМн СлС). В качестве многозначных ПСП можно рассматривать, например, четверичные Е-последовательности Велти для перескоков по четырем частотам [4]. В результате для формирования ДСЧ-ФМн СлС используются двоичночетверичные ПСП. Описание данных СлС будет не полным, если не отметить, что приемнике при формировании второй промежуточной частоты в ее В преобразователе используется один гетеродин с целью исключения разрыва фазы, у разночастотных сегментов принимаемого двоичного ФМн СлС; так же для исключения разрыва фазы у этих сегментов каждая из четырех частот является кратной тактовой частоте СлС f_T . В передатчике начальные фазы элементарных импульсов двоичной ПСП формируются также одинаковыми. В результате разночастотные сегменты двоичных ПСП имеют одинаковые начальные фазы, определяемые фазовым сдвигом сигнала гетеродина приемника относительно принимаемого сигнала.

Целью данного раздела является рассмотрение совместной работы устройств обнаружения (поиска) слабых шумоподобных сигналов и устройств слежения за изменением их параметров при заданной точности их конечной оценки с формированием копий принимаемых сигналов в квазикогерентном приемнике при многоэтапной параллельно-последовательной процедуре обнаружения и синхронизации, а также выработка единого критерия качества синхронизации и его анализ для спутниковой радиосистемы.

3.2. Обобщенная структурная схема канала синхронизации слабых шумоподобных сигналов

В соответствии с вышесказанным предполагается, что в КС первоначально производится обнаружение-различение всех шумоподобных СлС, одновременно присутствующих на входе приемника, то есть как разных по форме СлС, так и всех их копий, рассогласованных по частоте и задержке по времени. При этом в приемнике имеется банк возможных форм СлС, которые могут оказаться на его входе. С этой целью используется устройство обнаружения СлС (УОСлС), входящее в состав КС, структурная схема которого приведена на рисунке 3.1. Таким образом, в УОСлС производится обнаружение и первоначальная грубая оценка параметров (частоты и задержки по времени) всех шумоподобных СлС, одновременно присутствующих на входе приемника.

Информация о грубых значениях параметров всех обнаруженных СлС вводится в устройство выделения квазикогерентных опорных СлС (УВКОСлС) с помощью схемы захвата (СЗ) (см. рисунок 3.1). В УВКОСлС производится более точная оценка и слежение за задержками по времени и несущими частотами всех обнаруженных в УОСлС сигналов. Для идентификации режима слежения в соответствующих устройствах используется схема подтверждения (СхП). Она инициирует процедуру обнаружения СлС заново в случае, если он был обнаружен в УОСлС, но не произошел его захват в УВКОСлС, либо если произошел срыв слежения за его параметрами. На рисунке 3.1 показано также устройство обработки информационных сигналов (УОИС) когерентного типа, так как по КС результатам работы могут формироваться когерентные опорные информационные сигналы.

Более подробно структурная схема приемника совокупности шумоподобных СлС представлена на рисунке 3.2, где показано, что УВКОСлС состоит из набора схем ФАПЧ, а также набора схем АПВ, причем каждая схема ФАПЧ с помощью перекрестных связей объединена с одной из схем АПВ. Вместе они осуществляют совместное слежение за несущей частотой и задержкой по времени одного из обнаруженных СлС. На рисунке 3.2 показан также генератор опорных синхросигналов (СИНХ) (Ген. СИНХ), который фактически входит в состав набора схем АПВ и содержит банк всех возможных синхросигналов, по которым и работает КС. Но в нем, с целью настройки схем АПВ на слежение за задержками по времени обнаруженных СлС, формируются опорные сигналы только тех форм, которые были обнаружены в УОСлС. Таким образом, синхронизация опорных СИНХ, формируемых этим генератором, производится в АПВ, конечным итогом работы которого является формирование в Ген. СИНХ копий принимаемых СлС на видеочастоте, синхронных с ними по времени. Банк СИНХ, содержащийся в Ген. СИНХ, используется также для программирования УОСЛС. Кроме того, опорные СИНХ используются для формирования опорных информационных СлС на радиочастоте в модуляторе (М) с целью когерентной обработки информационных сигналов. Несущие частоты обнаруженных СлС подаются на M с выходов генераторов, управляемых напряжением (ГУН) схем ФАПЧ [20].

Рисунок 3.1 – Обобщенная схема приемника совокупности шумоподобных СлС.

Рисунок 3.2 – Схема приемника шумоподобных СлС с системами ФАПЧ и АПВ.

Для ДСЧ-ФМн СлС структурная схема КС для одного принимаемого СИНХ рассмотрена на рисунке 3.3.

Отметим, что в данном случае УВКОСлС состоит из одной схемы АПВ и четырех идентичных схем ФАПЧ, каждая из которых работает на своей промежуточной частоте. Схемы ФАПЧ и АПВ работают с перекрестными связами. УОИС работает по ИНФ. Для синхронизации УВКОСлС используется отдельный непрерывно повторяющийся ДСЧ-ФМн СИНХ. УВКОСлС включается в работу после обнаружения СлС в УОСЛС; после вхождения в синхронизм УВКОСЛС начинается прием полезной информации в УОИС. Поскольку в каждый момент времени принимаемый СлС присутствует только на одной из четырех частот, то для повышения помехоустойчивости УВКОСлС и УОИС путем улучшения в 4 раза отношения сигнал/помеха, – после вхождения в синхронизм схем ФАПЧ и АПВ стробирующие импульсы с генератора четверичной Е-последовательности поочередно открывают один ИЗ

76

соответствующих четырех ключей (Кл) на время, равное длительности частотных сегментов СлС.

Рисунок 3.3 – Структурная схема канала синхронизации двоично-четверичного ФМн СлС. УВЧ – усилитель высокой частоты, СМ – смеситель, УПЧ – усилитель промежуточной частоты, ПЧ – промежуточная частота, Кл – ключ.

3.3. Обнаружение (поиск) шумоподобных СлС

Предположим, что на входе приемника, присутствует в общем случае неизвестное число K аддитивных копий одного и того же СлС s(t),

рассогласованных друг относительно друга по временным задержкам, частотам несущих колебаний и их начальным фазам, то есть $s(t - t_1 - \tau_1, f_1 - \Delta f_1, \Delta \varphi_1), \dots, s(t - t_k - \tau_k, f_k - \Delta f_k, \Delta \varphi_k), \dots, s(t - t_K - \tau_K, f_K - \Delta f_K, \Delta \varphi_K)$, а также белый гауссовский шум, где $k = 1, \dots, K$ – номер копии СлС, $\tau = [\tau_1, \dots, \tau_k, \dots, \tau_K]$ и $\Delta f = [\Delta f_1, \dots, \Delta f_k, \dots, \Delta f_K]$ – неизвестные относительно малые и медленные смещения временных задержек и несущих частот этих СлС относительно постоянных и известных их значений $t = [t_1, \dots, t_k, \dots, t_K], f = [f_1, \dots, f_k, \dots, f_K]$, а $\Delta \varphi = [\Delta \varphi_1, \dots, \Delta \varphi_k, \dots, \Delta \varphi_K]$ – случайные сдвиги начальных фаз колебаний соответствующих несущих частот относительно нулевого сдвига фазы.

В случае, если K = 1, оценка параметров СлС, то есть его смещения по времени $\hat{\tau}_1$, частоте $\widehat{\Delta f_1}$ и фазе частоты $\widehat{\Delta \varphi_1}$ относительно t_1 , f_1 и нулевого фазового сдвига на фоне аддитивного белого гауссовского шума в соответствии с критерием максимального правдоподобия описывается как [12,59]:

$$\widehat{\tau_1}, \widehat{\Delta f_1}, \widehat{\Delta \varphi_1} = \underset{\tau_1, \Delta f_1, \Delta \varphi_1}{\operatorname{argmax}} \left(\operatorname{Re} \left[\dot{Z}(\tau_1, \Delta f_1, \Delta \varphi_1) + \xi \right] \right), \tag{3.2}$$

где *ξ* – аддитивная шумовая составляющая на входе решающего устройства,

$$\dot{Z}(\tau_1, \Delta f_1, \Delta \varphi_1) = e^{j \Delta \varphi_1} \dot{\chi}(t_1, \tau_1), \qquad (3.3)$$

$$\dot{\chi}(\tau_1, \Delta f_1) = \frac{1}{E_{1T_{\text{HAK}}}} \int_0^{T_{\text{HAK}}} \dot{S}(t) \, \dot{S}^*(t - \tau_1) e^{j2\pi \, \Delta \varphi_1} dt, \qquad (3.4)$$

 $\dot{\chi}(\tau_1, \Delta f_1)$ – комплексная ФН СлС, $\dot{S}(t)$ – его комплексная огибающая, $E_{1T_{\text{нак}}}$ – его энергия, накопленная в течение времени $T_{\text{нак}}$. Таким образом,

$$\widehat{\tau_1}, \widehat{\Delta f_1}, \widehat{\Delta \varphi_1} = \underset{\tau_1, \Delta f_1, \Delta \varphi_1}{\operatorname{argmax}} (\operatorname{Re} \left[e^{j \, \Delta \varphi_1} \dot{\chi}(\tau_1, \Delta f_1) \right].$$
(3.5)

Далее учитывают, что оценка $\Delta \varphi_1$ является мало информативной и значительно усложняет алгоритм оценки $\tau_1, \Delta f_1$, в результате чего в (3.2) вместо действительной части функции $\dot{Z}(\tau_1, \Delta f_1, \Delta \varphi_1) + \xi$ рассматривают ее модуль, то есть $|\dot{Z}(\tau_1, \Delta f_1, \Delta \varphi_1) + \xi| = |\dot{Z}(\tau_1, \Delta f_1, \Delta \varphi_1)| + \xi_{\chi^2}$ [14,60]. Тогда (3.5) можно переписать в виде:

$$\widehat{t_1}, \widehat{\Delta f_1} = \underset{\tau_1, \Delta f_1}{\operatorname{argmax}} (|\dot{\chi}(\tau_1, \Delta f_1)| + \xi_1).$$
(3.6)

Как следует из анализа последних формул, вариант алгоритма оценки параметров $\tau_1, \Delta f_1$ (3.5) требует оценки и $\Delta \varphi_1$. Основным его преимуществом является то, что ξ – аддитивный гауссовский белый шум. Но в алгоритме (3.6) помеховая составляющая ξ_1 имеет распределение Рэлея-Райса [60]. Этим можно было бы объяснить выигрыш алгоритма (3.5), по сравнению с (3.6), по точности оценок искомых параметров. Но в действительности выигрыш является спорным из-за увеличения размерности области определения функции $e^{j\Delta\varphi_1}\dot{\chi}(\tau_1,\Delta f_1)$, по сравнению с $|\dot{\chi}(\tau_1,\Delta f_1)|$, и влияния точности оценки $\Delta \varphi_1$ на точность $\hat{\tau}_1, \hat{\Delta f}_1$.

Таким образом, в приемнике необходимо вычислить функцию $|\dot{\chi}(\tau_1, \Delta f_1)|$, типичный вид которой для двоичного ФМн СлС показан на рисунке 3.4. Также на этом рисунке приведены ее сечения по оси времени $|\dot{\chi}(\tau_1, 0)|$ и по оси частот $|\dot{\chi}(0, \Delta f_1)|$. Ширина первого из них до его первых нулевых значений составляет $2T_3 = 2/f_T$, откуда следует, что точность оценки времени задержки СлС увеличивается при увеличении ширины его спектра. Вместе с тем, как следует из (3.4), ширина сечения ДКФ $|\dot{\chi}(0, \Delta f_1)|$ составит $2/T_{\text{нак}}$, то есть с увеличением $T_{\text{нак}}$ увеличивается и точность оценки частоты СлС. Причем, как следует из (3.4), при $\Delta f_1 = 0$ функция $\dot{\chi}(\tau_1, 0)$ представляет собой свертку комплексных огибающих опорного и принимаемого СлС. Но в общем случае комплексная огибающая принимаемого СлС – это $\dot{S}(t)$, а в приемнике формируется опорный комплексный видеосигнал $\dot{S}^*(t - \tau_1)e^{j2\pi\Delta f_1 t}$ при всех возможных значениях τ_1 и Δf_1 с учетом t_1 и f_1 .

Рисунок 3.4 – Типичный вид модуля ДКФ СлС и его сечений по времени и частоте.

3.4. УОСлС с цифровыми устройствами вычисления свертки комплексных огибающих опорных и принимаемых СлС

С учетом вышесказанного, полагая, что в приемнике вычисляется цифровая свертка опорного и принимаемого СлС, представим УОСлС для одного СлС (то есть УОСлС1) в виде, показанном на рисунке 3.5. Из его анализа видно, что генератор опорной частоты (ГОЧ1) формирует гармонический сигнал частоты $f_{on1} = f_1 + \Delta f_1$, а на выходе ФНЧ1 (рисунок 3.5) формируется функция $Re[\dot{S}(t)\exp(j2\pi\Delta ft + \varphi)]$, на выходе ФНЧ2 – функция $Im[\dot{S}(t)\exp(j2\pi\Delta ft + \varphi)]$, где Δf – разница между f_{on1} и несущей частотой входного СлС s(t), а φ – случайный сдвиг фазы между сигналами этих частот. Далее производится

80

дискретизация этих сигналов по времени с помощью АЦП с тактовой частотой $f_T = 1/T_9$, вырабатываемой тактовым генератором (ТГ). Но согласно теореме Котельникова, частота дискретизации данного сигнала по времени должна быть в два раза больше f_T . В данном случае повышение этой частоты обеспечивается повторной дискретизацией этого же сигнала, но со сдвигом по времени на $T_9/2$. Затем вычисляются дискретные свертки отсчетов синфазной и квадратурной составляющих принимаемого СлС и опорной ПСП, на основе которой он сформирован, в устройствах свертки ПСП (УСПСП). При этом УСПСП1-УСПСП4 – это одно и то же устройство, вычисляющее дискретную свертку синфазной (УСПСП1 и УСПСП3) и квадратурной (УСПСП2 и УСПСП4) составляющих комплексной огибающей входного СлС с опорной ПСП, но в УСПСП3 и УСПСП4 отсчеты входного СлС сдвинуты на $T_9/2$ относительно его отсчетов в УСПСП1 и УСПСП2.

Необходимо учитывать, что f_T не может быть точно равна тактовой частоте принимаемого СлС из-за нестабильностей ТГ как на приемной, так и на передающей стороне, что неминуемо приведет К так называемому проскальзыванию, когда соседние отсчеты СлС в любом АЦП будут приходиться на один и тот же его элементарный импульс, либо один импульс будет пропущен. Но очевидно, что благодаря повторной дискретизации принимаемого СлС со сдвигом по времени на $T_{2}/2$ проскальзывание не может произойти в АЦП1 и АЦП2 одновременно с таким же событием в АЦП3 и АЦП4. Таким образом, проблема проскальзывания из-за нестабильности ТГ частично решается повторной дискретизацией принимаемого СлС. Но длительность СлС, энергия которого может накапливаться в УСПСП Т_{нак}, ограничивается длительностью промежутка времени между соседними проскальзываниями. Очевидно, это время будет соответствовать длине ПСП, равной δ^{-1} , где δ – максимальное относительное отклонение частоты ТГ от ее номинального значения. Тогда длина ПСП, обрабатываемая в устройстве свертки, теоретически может составлять несколько сотен тысяч, поскольку δ в современных радиосистемах обычно не менее 10^{-5} ... 10^{-6} . Таким образом, казалось бы, можно выбрать значение $T_{\text{нак}}$ таким, чтобы обеспечить отношение сигнал/шум на выходе УСПСП достаточным для обнаружения СлС с любыми заданными значениями вероятности правильного обнаружения p_{ofh} и ложной тревоги p_{nT} . Но в действительности, если рассогласование по частоте сигнала с выхода ГОЧ1 и принимаемого СлС больше, чем $1/2T_{hak}$, то он не будет обнаружен из-за отсутствия сигнала на выходе устройства цифровой свертки. Значение T_{hak} ограничивается также требованиями к сложности или длительности времени ее вычисления.

Если энергии СлС длительностью *Т*_{нак} не достаточно для его обнаружения с $p_{\rm off}$ и $p_{\rm JT}$, можно использовать цифровое последетекторное заданными числа СлС с накопление энергии некоторого этой длительностью энергетическом цифровом накопителе (НЦ), показанном на рисунке 3.5, где в РУ1 принимается решение о превышении сигналом порогового уровня, то есть происходит дополнительное квантование сигнала на два уровня. Затем с помощью набора счетчиков (Сч) подсчитывается число превышений порогового уровня РУ1 в течение некоторого промежутка времени, соответствующего числу накапливаемых СлС длительностью Т_{нак}. При этом число Сч равно длине ПСП N, соответствующей Т_{нак}, а разрядность каждого из них определяется числом импульсов СлС с длительностью Т_{нак}, энергию которых необходимо накопить. Таким образом, рассматривается два варианта накопления энергии СлС – с помощью вычисления его свертки и некогерентное накопление с помощью цифрового энергетического накопителя. Эффективность последнего варианта объясняется существенным увеличением отношения сигнал/шум на входе РУ1, по сравнению со входом приемника, из-за использования цифровой свертки принимаемого СлС. Отметим, что НЦ не позволяет повысить точность оценки параметров принимаемого СлС, а лишь улучшить вероятностные характеристики его обнаружения.

Рассмотрим возможность обнаружения K аддитивных копий одного и того же СлС, рассогласованных по частоте и задержке. При этом будем учитывать, что ширина сечения ДКФ СлС по частоте составляет $1/T_{\text{нак}}$, в результате чего можно

обеспечить эффективное накопление энергии только тех СлС, разность несущих частот которых и f_{on1} , то есть Δf , не больше $1/3T_{\text{нак}}$.

Рисунок 3.5 – Функциональная схема УОСлС.

В конечном итоге следует выбрать значение $T_{\text{нак}}$ таким, чтобы в пределах полосы частот $[f_{\text{on1}} - 1/3T_{\text{нак}}, f_{\text{on1}} + 1/3T_{\text{нак}}]$ имелась только одна копия принимаемого СлС с неизвестной задержкой по времени, любо совокупность СлС с одинаковыми несущими частотами и разными задержками по времени. В этом случае нелинейное преобразование при вычислении квадратного корня из суммы квадратов синфазной и квадратурной составляющих результирующего сигнала не приводит к появлению существенных взаимных помех между копиями одного и того же СлС, поскольку фактически в каждый момент времени данному преобразованию подвергается лишь один СлС, а взаимные помехи между копиями минимизируются при выборе значения $T_{\text{нак}}$.

Для обнаружения всех копий СлС, рассогласованных по частоте и задержке по времени, необходимо либо последовательно перестраивать f_{on1} с шагом $1/3T_{\rm нак}$, либо параллельно формировать опорные частоты с тем же шагом, перекрывая область неопределенности СлС по частоте. В последнем случаях необходимо одновременно использовать УОСлС1, УОСлС2..., УОСлС $N_{\rm q}$, число которых $N_{\rm q}$ соответствует числу формируемых опорных частот $f_{\rm on1}$, $f_{\rm on2}$, ..., $f_{\rm onN_q}$. Структурная схема УОСЛС для этого случая представлена на рисунке 3.6. Таким образом, в УОСЛС реализуется грубая оценка задержек по времени несущих частот СЛС с точностью $1/(3T_{\rm нак})$ и их задержек по времени с точностью $T_{\rm g}$.

Вероятностные характеристики обнаружения совокупности СлС, рассогласованных по частоте и временной задержке, можно повысить, если увеличить $T_{\text{нак}}$. Данное обстоятельство иллюстрируется с помощью рисунка 3.7, где показаны результирующая ДКФ четырех копий одного и того же СлС при двух значениях параметра $T_{\text{нак}}$. Отметим, что с целью обнаружения СлС, формируемых на основе разных по структуре ПСП, необходимо последовательно перестраивать УСПСП данного УОСЛС, либо параллельно использовать УОСЛС, согласованные с разными по структуре СлС.

Эффективность данного устройства в существенной степени зависит от длительности времени вычисления цифровой свертки в УСПСП. Ее ускоренные алгоритмы, основанные на приведении матриц-циркулянтов ПСП к матрице Уолша-Адамара или ее фрагментам, известны для большого класса ПСП таких как МП и их отрезки (сегменты), коды Голда и их сегменты, последовательности Касами и т.д. [7].

Рисунок 3.6 – Структурная схема УОСлС, предназначенных для обнаружения совокупности СлС, рассогласованных по частоте и временной задержке.

Самый существенный выигрыш по числу элементарных математических операций, равный N/m, будет при использовании периодических МП, по сравнению с традиционным способом вычисления свертки, где N – длина ПСП, соответствующая $T_{\rm нак}$, а m – глубина памяти ПСП [20,42,54]. На практике такой выигрыш по длительности времени вычисления свертки может достигать нескольких десятков секунд. В любом случае отрезок ПСП сначала записывается в ОЗУ, после чего ускоренно вычисляется его свертка с опорной ПСП и фиксируется время вычисления, затем производится экстраполяция по времени обнаруженного фрагмента ПСП на сигнал канала связи с учетом ее возможной погрешности [54-56].

Рисунок 3.7 – Результирующие ДКФ четырех рассогласованных копий одного и того же СлС для двух значений $T_{\text{нак}}$; рисунок а) построен для значения $T_{\text{нак}}$, меньшего, чем рисунок б).

При достаточно высокой эффективности УСПСП, которая, кроме алгоритма ускоренного вычисления свертки, зависит еще и от быстродействия используемых цифровых сигнальных процессоров (ЦПОС), возможно и не потребуется последетекторное цифровое накопления энергии принимаемых СлС.

3.5. УОСлС с аналоговыми согласованными фильтрами на ПАВ

Вариант УОСлС для ДСЧ-ФМн СлС с аналоговыми перестраиваемыми СФ показан на рисунке 3.8. Последние довольно часто реализуются на основе устройств на ПАВ [61], которые могут работать непосредственно на рабочих частотах СлС вплоть до 1,5 ГГц [44,62], либо на промежуточных частотах, если используется более высокочастотный диапазон, И могут легко перепрограммироваться при смене ПСП [62]. В данном случае используется по два набора СФ на ПАВ на каждой из четырех частот ДСЧ-ФМн СлС, поскольку допустимые размеры подложек таких фильтров существенно ограничивают длительность СлС Т_{нак}, который может непосредственно обрабатываться в них. Обычно удается обрабатывать ФМн СлС с шириной полосы частот не более нескольких десятков МГц и длительностью $T_{C\Phi}$, соответствующей длине ПСП не более N = 1024. Два таких СФ могут быть соединены последовательно. Поэтому в каждом наборе СФ обрабатывается СлС длительностью $T_{C\Phi} = T_{Hak}/2$. На рисунке 3.8 на нижний СФ сигнал подается через линию задержки (ЛЗ), которая тоже представляет собой прибор на ПАВ. После ЛЗ используется линейный усилитель (У), поскольку потери в ней по мощности составляют несколько десятков дБ [61]. Таким образом, длительность фрагмента СлС, обрабатываемая с помощью данной схемы, равняется $4T_{C\Phi}$, но значение T_{Hak} , определяющее ее разрешающую способность, равно $2T_{C\Phi}$, поскольку производится суммирование откликов двух пар СФ. Кроме того, рисунок 3.8 соответствует случаю, когда ширина области неопределенности СлС по частоте лишь в три раза превосходит ширину полосы пропускания любого из СФ. То есть в данном случае $N_{\rm q} = 3$, поэтому на каждой из четырех промежуточных частот параллельно включено три частотно-смещенные группы СФ, перекрывающих всю область неопределенности СлС по частоте $F_{\text{неоп}}$.

Рисунок 3.8 – УОСлС, разработанное на ПАВ для ДСЧ-ФМн СлС.

Возможен вариант с разработкой СФ и ЛЗ на промежуточных частотах и последовательным преобразованием частот входного СлС на середние частоты амплитудно-частотная характеристика (АЧХ) СФ. Тогда можно реализовать поиск СлС в более широкой области неопределенности по частоте, по сравнению с общей полосой пропускания трех аналоговых СФ на ПАВ, но преобразование входного СлС по частоте приведет к дополнительным рассогласованиям по фазе несущей частоты.

87

С целью последетекторного накопления энергии СлС на каждой из четырех частот используется амплитудный детектор (АД) в каждом из трех частотносмещенных каналов, перекрывающих область неопределенности СлС по частоте. При этом на выходе АД в первом решающем устройстве РУ1 производится бинарное квантование сигнала перед набором Сч двоичных импульсов. Число счетчиков соответствует удвоенному значению N, а разрядность каждого из них определяется тем, энергию скольких импульсов длительностью $T_{\text{нак}}$ надо накопить для обеспечения заданных характеристик обнаружения СлС.

Если частота принимаемого СлС попадет в полосу пропускания одного из трех СФ на уровне 0,7 от максимального значения его амплитудно-частотной характеристики, то в РУ2 он будет обнаружен с некоторой вероятностью p_{o6h1} на выходе одного из 2N Сч, поскольку там с наибольшей вероятностью появляется сигнал в момент возникновения основного пика ДКФ сегмента СлС, передаваемого на одной из четырех частот. Но в РУ2 под действием помех может возникнуть и ложная тревога с некоторой вероятностью $p_{лт1}$. Погрешность момента обнаружения по времени сегмента СлС, передаваемого на одной из четырех частот и периодически повторяющегося в соответствии с ПСП переключения частот, составляет $T_3/4$. Эта последовательность определяется также в РУ2.

Отметим, что в данном случае производится додетекторное суммирование разночастотных откликов СФ, хотя на вход УОСлС с выхода преобразователя частоты приемника эти сегменты СлС, излученные на разных частотах, высокочастотного колебания, поступают без разрыва фазы поскольку используется один гетеродин для всех несущих частот. Но очевидно, что потери из-за такого суммирования будут тем меньше, чем больше среднеарифметическое значение четырех используемых частот отличается от суммарной ширины спектра ДСЧ-ФМн СлС. Также необходимо отметить, что в данном случае производится обработка только действительной части ДКФ СлС, поскольку только именно ей соответствует отклик СФ, причем в случае использования преобразователя частоты на входе СФ неизбежно возникновение неизвестного

фазового сдвига φ несущей частоты принимаемого СлС, в результате чего отклик СФ уменьшается пропорционально *соs* φ .

Относительно небольшие длины ПСП, которые могут обрабатываться в СФ на ПАВ, приводят к существенно меньшей разрешающей способности соответствующего УОСлС, по сравнению с вариантом использования в нем цифровых УСПСП. Эффективность его работы определяется в основном устройством цифрового накопления энергии СлС, а СФ на ПАВ при малых отношениях сигнал/шум по мощности на входе КС можно рассматривать как устройства, позволяющие существенно повысить эффективность цифрового энергетического обнаружителя.

Кроме того, несомненно, что быстродействие УОСлС с СФ на ПАВ будет более высоким, по сравнению с его вариантом с цифровыми УСПСП.

Необходимо отметить, что вариант УОСлС, рассмотренный в данном разделе, позволяет уменьшить ширину области неопределенности принимаемого СлС по частоте в три раза только в том случае, если $1/(3T_{\text{нак}}) \approx F_{\text{неоп}}/N_{\text{ч}}$. Учитывая, что в данном случае $N_{\rm q}=3$ и $T_{\rm Hak}=NT_{\rm g},$ а $f_T=1/T_{\rm g},$ получим, что длина ПСП, которая должна обрабатываться в одном СФ, должна составлять не менее $f_T/$ $F_{\rm Heoff} = 10$ кГц, а $F_{\rm HeOT}$. Так, например, если ширина полосы частот. соответствующая одному из четырех фрагментов ДСЧ-ФМн СлС равна 20МГц (ширина общей занимаемой полосы частот порядка 80МГц), то эта длина для каждого СФ должно быть не менее 1000, что соответствует предельным возможностям СФ на ПАВ. Но если при ширине полосы частот двоичного ФМн СлС порядка 20 МГц используются СФ на длину ПСП порядка 500, что может быть легко реализовано, то $T_{\rm Hak} \approx 2.5 \cdot 10^{-5}$ с, а ширина сечения основного пика ФН по частоте такого СлС составит приблизительно 40кГц, что больше F_{неоп}.

Тогда одночастотный сегмент ДСЧ-ФМн СлС с высокой вероятностью будет обнаружен одновременно на выходе всех трех СФ, перекрывающих $F_{\text{неоп}}$. В этом случае использование трех СФ для обнаружения каждого одночастотного сегмента не имеет смысла, и достаточно одного СФ на каждый сегмент. В этом случае работа УОСЛС не приведет к уменьшению $F_{\text{неоп}}$ принимаемого ДСЧ-ФМн

СлС, но позволить обеспечить точность оценки его задержки по времени порядка $T_{9}/4$.

3.6. Повышение точности оценки параметров СлС в УВКОСлС

В случае обнаружения в УОСлС совокупности копий различных по структуре СлС, каждый из которых излучается на своей (одной) несущей частоте, необходимо использовать один комплект схем поисковых ФАПЧ и АПВ, работающих с перекрестными связями, для каждой обнаруженной копии. Учитывая, что структура КС для варианта обнаружения совокупности двоичных ФМн СлС достаточно очевидна, рассмотрим случай, когда в УОСлС обнаружена совокупность ДСЧ-ФМн СлС. Тогда для каждого такого СлС УВКОСлС состоит из четырех поисковых схем ФАПЧ, которые работают совместно с одной схемой АПВ, как это показано на рисунке 3.9. На вход схемы АПВ, кроме принимаемого СлС, поступает и квазикогерентная опорная несущая на промежуточной частоте (ПЧ), сформированная в ГУН ФАПЧ. В результате можно выделить ПСП, на основе которой сформирован СлС на этой частоте, что необходимо для работы схемы АПВ. Тем не менее, в каждом из двух ее каналов используется двухполупериодный выпрямитель (ДППВ) [5] формирования лля видеочастотного сигнала. Этот сигнал с выхода ДППВ оного из каналов схемы АПВ используется не только для формирования ее дискриминационной характеристики, но и служит входным сигналом схемы подтверждения (СхП), показанной на рисунке 3.9. Пороговый уровень в ее решающем устройстве (РУ_{СхП}) выбирается при учете допустимого среднеквадратического отклонения значения частоты опорного сигнала, формируемого системой ФАПЧ, и смещения по времени опорной ПСП, формируемой в Ген. СИНХ+ИНФ, по отношению к принимаемому СлС. Еще раз подчеркнем, что УОСлС может работать по ИНФ, а синхронизация систем ФАПЧ осуществляется по периодическому СИНХ. В случае, если спутник находится на геостационарной орбите, максимальная помехоустойчивость УОИС обеспечивается в случае, если на СИНХ выделяется не более 10% общей мощности радиопередатчика, поскольку в этом случае ширина полосы частот петлевого фильтра ФАПЧ может быть весьма узкой из-за слабой динамики изменения частоты СлС [57]. Но в случае использования эллиптических или низких орбит вопрос об оптимальном распределении мощности между ИНФ и СИНХ нуждается в исследовании.

Рисунок 3.9 – Схемы ФАПЧ и АПВ, работающие с перекрестными связями, для ДСЧ-ФМн СлС.

3.7. Многоэтапный параллельно-последовательный поиск частоты и задержки СлС по времени

Первый этап поиска СлС по частоте и задержке по времени производится в УОСлС, причем в любом из рассмотренных его вариантов вся область неопределенности СлС по частоте и задержке по времени фактически разбивается на совокупность частотно-временных интервалов, число которых равно $N_{\rm v} \times 2N$,

где N – число элементарных импульсов ПСП, соответствующих $T_{\text{нак}}$, а $N_{\text{ч}}$ – число частотных интервалов. Обозначим вероятность правильного обнаружения всех копий СлС в УОСлС как $p_{\text{обн1}}$, а вероятность ложной тревоги – как $p_{\text{лт1}}$. Таким образом, на первом этапе ширина области неопределенности СлС по частоте сокращается в z_1 раз и составляет $F_2 = F_1/z_1$, где $z_1 = N_{\text{ч}}$, $F_1 = F_{\text{неоп}}$.

Грубая оценка каждой их четырех несущих частот уже произведена в УОСлС, а уточнение ее значения с помощью поисковой ФАПЧ может осуществляться путем дискретной перестройки частоты ее ГУН и уменьшения полосы пропускания ее петлевого фильтра.

Второй этап поиска параметров частоты и задержки СлС по времени реализуется в УВКОСлС путем дискретной перестройки частоты ГУН поисковой ФАПЧ в полосе частот с шириной F_2 . При этом ширина полосы частот петлевого фильтра $\Delta f_{\Phi A\Pi 42}$ выбирается в несколько раз меньшей F_2 , а общее число анализируемых частотных интервалов составит $z_2 = F_2/\Delta f_{\Phi A\Pi 42}$. Далее, выбирается начальная частота ГУН в первом частотном интервале с шириной полосы частот $\Delta f_{\Phi A\Pi 42}$, а подтверждением того, что частота принимаемого СлС не более чем на $\Delta f_{\Phi A\Pi 42}$ отклоняется от выбранной частоты ГУН и схема ФАПЧ находится в режиме синхронизма, является превышение порогового уровня в РУ_{СхП}.

Но если превышение порога не произошло, и режим синхронизма отсутствует – значение частоты ГУН перестраивается на $\Delta f_{\Phi A\Pi 42}/2$, и анализируется следующий интервал частот с шириной $\Delta f_{\Phi A\Pi 42}$. В случае, если обнаружение СлС не произошло ни в одном из частотных интервалов, считается, что в УОСлС произошла ложная тревога, и СхП подает соответствующий сигнал в СЗ, которая вновь инициирует первый этап поиска СлС, после чего повторяется второй этап. Но если в каком-то из частотных интервалов был обнаружен СлС – инициируется третий этап поиска, при котором общая ширина области неопределенности СлС по частоте составляет $F_3 = F_2/z_2$, а ширина полосы пропускания петлевого ФНЧ $\Delta f_{\Phi A\Pi 43}$ выбирается в несколько раз меньшей F_3 . Кроме того, пропорционально увеличивается пороговый уровень в РУ_{СхП} с целью уменьшения вероятности ложной тревоги. Очевидно, что второй и третий этапы поиска, а при необходимости последующие его этапы сопровождаются уменьшением ширины полосы пропускания петлевого фильтра $\Delta f_{\Phi A\Pi \Psi}$, что повышает помехоустойчивость ФАПЧ и точность оценки частоты СлС. Но уменьшение $\Delta f_{\Phi A\Pi \Psi}$ ограничивается необходимостью отслеживать изменение частоты принимаемого СлС. Таким образом, точность оценки частоты СлС и минимальная ширина полосы пропускания петлевого фильтра, равно как число этапов поиска СлС, задаются заранее при учете динамики изменения его частоты.

Законченный цикл обнаружения и оценки параметров СлС с заранее известной точностью соответствует ситуации его обнаружения на последнем этапе поиска в последнем частотном интервале, анализируемом ФАПЧ. Но на любом из этапов поиска может произойти пропуск или ложная тревога, что будет обнаружено с помощью СхП, и СЗ инициирует вновь первый этап поиска. Очевидно, что в этом случае возврат к первому этапу произойдет за более короткий интервал времени, по сравнению с длительностью законченного цикла. То есть длительность цикла поиска является случайной величиной.

Обозначив общее число этапов поиска СлС как Z, их нумерацию будем производить с помощью символа *i* = 1, ..., *Z*. Число частотных интервалов на каждом этапе определим как z_i, а ширину области неопределенности по частоте для каждого из них – как F_i. При этом ширина полосы пропускания петлевого фильтра на каждом этапе составит $\Delta f_{\Phi A \Pi \Psi i}$, а длительность времени анализа каждого частотного интервала T_i , начиная со второго этапа. Общую длительность времени обнаружения СлС на первом этапе в УОСлС обозначим как T₁. По времени T_i , i = 1, ..., Z произойдет промежутка правильное окончании обнаружение СлС с вероятностью $p_{\text{обн}i}$, либо его пропуск с вероятностью 1 $p_{\text{обн}i}$, либо ложная тревога с вероятностью $p_{\text{лт}i}$. Отметим, что начиная со второго этапа поиска значения $p_{\text{обн}i}$ и $p_{\text{лт}i}$ зависят, во-первых, от вероятности захвата частоты СлС в системе Φ АПЧ p_{3i} при его наличии в этой полосе, во-вторых, от правильного обнаружения $p_{\text{обн.СхП}i}$ и вероятности ложной тревоги $p_{\text{лт.СхП}i}$ в СхП. Очевидно, что $p_{\text{обн}i} = 1 - p_{3i}(1 - p_{\text{обн.СхП}i}), p_{\text{лт}i} = p_{\text{лз}i}p_{\text{лт.СхП}i}.$

В качестве иллюстрации многоэтапной параллельно-последовательной процедуры поиска СлС, описанной выше, на рисунке 3.10 показана область неопределенности СлС с шириной по частоте $F_1 = 10$ кГц. Ширина области неопределенности по времени определяет возможность использования всего лишь трех СФ, перекрывающих F_1 . Таким образом, $z_1 = 3$, кроме того, выбрано три интервала обнаружения на втором этапе, то есть $z_2 = 3$, а также $z_3 = 4$. Предполагается, что обнаружен один двоичный ФМн СлС.

Общее число частотно-временных интервалов для процедуры параллельнопоследовательного поиска составит $2N \prod_{i=1}^{Z} z_i$, и для обозначения каждого из них будем использовать (Z + 1) -мерный вектор [$x_{1t} x_{1f} x_{2f} \dots x_{Zf}$], где $x_{1t} = 1, \dots, 2N$ – номер временного интервала при последовательном анализе временных интервалов на первом этапе поиска, $x_{if} = 1, \dots, z_i$ – номер частотного интервала, анализируемого на *i* -ом этапе поиска, $i = 1, \dots, Z$.

Рисунок 3.10 – Иллюстрация многоэтапной параллельно-последовательной процедуры совместного обнаружения и оценки параметров СлС.

3.8. Характеристики эффективности КС

Полагая, что СлС присутствуют на входе приемника, будем считать основными показателями эффективности его КС длительность времени до начала слежения за их параметрами несущих частот и задержек по времени, а также характеристики обнаружения. Отметим, вероятностные ИХ ЧТО анализ эффективности работы КС совокупности СлС, одновременно ДЛЯ присутствующих на его входе, весьма сложен, и для его разработки метода ее исследования необходимо создание соответствующей компьютерной модели. Поэтому ограничимся случаем обнаружения и синхронизации одного СлС.

Длительность времени до начала слежения за параметрами СлС

Предположим, что СлС находится в последнем частотно-временном интервале, анализируемом с помощью УОСлС и УВКОСлС, с (Z + 1) – мерным номером [2N $z_1 ... z_Z$], когда время до начала слежения за таким СлС будет максимальным, по сравнению с другими возможными его позициями на частотно-временной плоскости. Длительность среднего максимального времени поиска такого СлС определим как:

$$\overline{T_{max}} = \overline{T_u N_u},\tag{3.7}$$

где $\overline{T_{u}}$ – средняя длительность одного цикла поиска; $\overline{N_{u}}$ – среднее число таких циклов, которые пришлось реализовать с целью обнаружения СлС при заранее заданных значениях вероятностных характеристик этого обнаружения.

Значение $\overline{T_{\mu}}$ можно найти, суммируя по всем (Z + 1)-мерным номерам частотно-временных интервалов произведения длительностей времени от начала цикла до начала анализа каждого из интервалов и вероятностей окончания цикла на этом интервале ложной тревогой, правильным обнаружением, либо пропуском СлС, то есть

$$\overline{T_{\mathrm{II}}} = T_1 + \sum_{x_{1t}=1}^{2N-1} \sum_{x_{2f}=1}^{Z_2} \cdots \sum_{x_{Zf}=1}^{Z_Z} T_{yx_{1t} x_{1f} x_{2f} \cdots x_{Zf}} p_{\mathrm{JT}x_{1t} x_{1f} x_{2f} \cdots x_{Zf}} + \sum_{x_{1t}=1}^{2N} (p_{\mathrm{O}\mathrm{D}\mathrm{II}} p_{\mathrm{J}} p_{\mathrm{$$

 $+T_{u_2N} z_1...z_Z}(p_{o6h,2Nz_1...z_Z} + p_{np,2Nz_1...z_Z}),$ (3.8) где T_1 – длительность времени анализа двумерного интервала области неопределенности СлС на первом этапе цикла, $T_{u_{X_{1f}} x_{1f} x_{2f}...x_{Zf}} = x_{1t}T_1 + x_{1f}T_2 +$ $\dots + x_{Zf}T_Z$ – длительность времени одного цикла при ложном обнаружении СлС в каком-то частотно-временном интервале с номером $[x_{1t} x_{1f} x_{2f} ... x_{Zf}]$ при $x_{1t} =$ $1, ..., 2N, x_{if} = 1, ..., z_i, i = 1, ..., Z, a p_{\pi T x_{1t} x_{1f} x_{2f}... x_{Zf}}$ – вероятность окончания цикла на этом этапе ложной тревогой. Тогда $T_{u_2N z_1...z_Z}$ – длительность времени законченного цикла поиска, $p_{o6h,2Nz_1...z_Z}$ - вероятность окончания цикла поиска на последнем частотно-временном интервале при правильном обнаружении СлС, $p_{np,2Nz_1...z_Z}$ - вероятность пропуска СлС. При этом очевидно, что в случае, если на первом этапе число частотных интервалов, анализируемых параллельно, составляет z_1 , то вероятность окончания первого этапа цикла поиска ложной тревогой при анализе временного интервала x_{1t} составит:

$$p_{\pi x_{1t}} = (1 - p_{\pi t.i})^{(x_{1t} - 1)z_1} (1 - (1 - p_{\pi t.i})^{z_1}),$$
(3.9)

а на каждом из последующих этапов

$$p_{\pi \pi x_{if}} = (1 - p_{\pi \pi i})^{(x_{if} - 1)} p_{\pi \pi i}, \ i = 1, \dots, Z.$$
(3.10)

При анализе последнего временного интервала, когда число параллельно анализируемых частотных интервалов составляет z_1 , вероятность ложной тревоги

$$p_{\text{JT.2N}} = (1 - p_{\text{JT.1}})^{2Nz_1 - 1} \sum_{x_{1f}=1}^{z_1 - 1} (1 - p_{\text{JT.1}})^{x_{1f} - 1} p_{\text{JT.1}}.$$
(3.11)

В результате

$$p_{\text{JT}x_{1t} x_{1f} x_{2f} \dots x_{Zf}} = p_{\text{JT}x_{1t}} \prod_{i=2}^{Z} p_{\text{JT}x_{if}} + p_{\text{JT}.2N} \prod_{i=2}^{Z} p_{\text{JT}x_{if}}$$

то есть

$$p_{\pi T x_{1t} x_{1f} x_{2f} \dots x_{Zf}} = \{ (1 - p_{\pi T.1})^{(x_{if} - 1)Z} [1 - (1 - p_{\pi T.1})^Z] (1 - p_{\pi T.1})^{2NZ - 1} (1 - p_{\pi T.1})^{z_1 - 1} \} [p_{\pi T} (1 - p_{\pi T.1}) \sum_{i=2}^{Z} (x_{if} - 1)].$$
(3.12)

При выводе формулы (3.12) предполагалось, вероятности ложных тревог при анализе всех частотно-временных интервалов, кроме первого, одинаковые и равны $p_{\rm лт}$, а на первом этапе эта вероятность в общем случае отличается от $p_{\rm лт}$ и равна $p_{\rm лт,1}$.

Вероятность правильного обнаружения СлС в последнем анализируемом частотно-временном интервале составит:

$$p_{\text{ofh},2NZ_{1}\dots Z_{Z}} = (1 - p_{\text{TT},1})^{2NZ-1} p_{\text{ofh},1} \cdot \prod_{i=2}^{Z} (1 - p_{\text{TT},i})^{Z-1} p_{\text{ofh},i}, \qquad (3.13)$$

а вероятность его пропуска –

$$p_{\text{пр.}2Nz_1\dots z_Z} = 1 - p_{\text{обн.}2Nz_1\dots z_Z},\tag{3.14}$$

то есть $p_{\text{пр.}2Nz_1...z_Z} + p_{\text{обн.}2Nz_1...z_Z} = 1$. Для определения $\overline{T_{\mu}}$ надо подставить (3.9)-(3.14) в (3.7), где $\overline{N_{\mu}} = 1/p_{\mu}$, а p_{μ} – полная вероятность окончания процедуры поиска на одном цикле [5], причем

$$p_{u} = \sum_{x_{1t}=1}^{2N-1} \sum_{x_{1f}=1}^{Z_{1}} \cdots \sum_{x_{Zf}=1}^{Z_{Z}} p_{\text{odh}x_{1t} x_{1f} x_{2f} \cdots x_{Zf}} + p_{\text{odh}.2NZ_{1} \cdots Z_{Z}}$$

Bыбор значений $p_{\text{обн.}i}$ и $p_{_{\text{ЛТ.}i}}$

При многоэтапной циклической параллельно последовательной процедуре обнаружения (поиска) и синхронизации СлС, находящегося в последнем частотно-временном интервале, вероятность его правильного обнаружения на *j* - ом цикле равна сумме вероятностей законченных циклов поиска, то есть

$$P_{\text{ofh}} = \sum_{j=1}^{\infty} p_{\text{ofh}}^{j} , \qquad (3.15)$$

где j – номер законченного цикла поиска, $p_{obh}^{j} = (1 - p_{u}^{j-1})p_{obh.2Nz_{1}...z_{Z}}$ – вероятность окончания поиска на j-ом цикле правильным обнаружением СлС. Аналогично (3.15) получим выражение для вероятности завершения j-го законченного цикла поиска ложной тревогой:

$$P_{\rm JT} = \sum_{j=1}^{\infty} p_{\rm JT}^{j}, \tag{3.16}$$

где $p_{\text{лт}}^j = (1 - p_{\mu}^{j-1}) \sum_{x_{1t}=1}^{2N-1} \sum_{x_{1f}=1}^{z_1} \cdots \sum_{x_{2f}=1}^{z_Z} p_{\text{обн}x_{1t}} x_{1f} x_{2f} \dots x_{2f}$.

Мы рассмотрели основные характеристики многоэтапной параллельнопоследовательной процедуры поиска параметров СлС, которыми являются $\overline{T_{max}}$, $P_{\rm ofh}$ и $P_{\rm nt}$. Но для их расчета по формулам (3.7), (3.15) и (3.16) необходимо выбрать значения $p_{\rm ofh,i}$ и $p_{\rm nt,i}$, i = 1, ..., Z, учитывая их взаимосвязь с $P_{\rm ofh}$ и $P_{\rm nt}$.

Выбирая типичное значение *N* порядка нескольких тысяч, а также пять этапов цикла поиска, число процедур последовательного анализа на каждом этапе порядка трех-четырех, начиная со второго этапа, из анализа (3.15), (3.16) получим, что $P_{\rm ofh} \approx 0.95$ при выборе $p_{\rm лт.i} = 10^{-6}$. В этом случае вероятность ложной тревоги $P_{\rm лт} \approx 10^{-6}$, а $p_{\rm ofh.i} \approx 0.99$. При этом длительность времени накопления энергии СлС на любом частотно-временном интервале должна быть такой, чтобы выполнялось неравенство $p_{\rm лт.i} \leq 10^{-6}$, поскольку в противном случае $p_{\rm ofh}$ будет меньше 0.7.

Важный вывод, который следует из анализа формул (3.12), (3.13): при увеличении Z с одновременным увеличением от этапа к этапу порогового уровня в СхП удается стабилизировать $P_{\rm AT}$, и даже возможно обеспечить ее уменьшение, но при этом возрастает вероятность пропуска СлС. Для стабилизации последнего необходимо уменьшать $p_{\rm AT.i}$, i = 1, ..., Z при увеличении длительности накопления энергии СлС при анализе каждого частотно-временного интервала при соответствующем увеличении порогового уровня в СхП.

С учетом вышесказанного запишем приближенную формулу для расчета $\overline{T_{max}}$. Из (3.7) и (3.9), (3.10) следует, что в случае $p_{\text{обн.}i} = 0.99, p_{\text{лт.}i} = 10^{-6}, i = 1, \dots, Z, \overline{N_{\text{ц}}} = 1$ искомое приближенное значение $\overline{T_{max}}$ составит:

$$\overline{T_{max}} = \overline{T_{\mu}} = T_1 + T_{\mu 2Nz_1 \dots z_Z}, \tag{3.17}$$

где

$$T_{u2Nz_1...z_Z} = \sum_{i=2}^{Z} T_i z_i.$$
(3.18)

3.9. Длительность времени поиска и синхронизации параметров СлС

Для варианта СлС с перескоками по частоте и построения УОСлС на основе СФ на ПАВ найдем T_i , i = 1, ..., Z при действии совокупности шумовых, взаимных и внешних помех от других радиосистем. Взаимные помехи возникают в случае, когда некоторое количество абонентов N_{a6} работает в общей полосе частот со СлС, параметры частоты и задержки по времени которого необходимо определить. Сумму этих помех будем считать аддитивным белым гауссовским шумом на входе УОСлС. В этом случае

$$T_1 = T_{\mathcal{P}} N_n S_u, \tag{3.19}$$

где $N_{\rm II} = NN_f$ – общее число элементарных символов СлС на длительности периода его повторения T_s с учетом перескоков по частоте, N – число этих импульсов в одночастотном сегменте, N_f – число используемых частот, $S_{\rm II}$ – число импульсов длительностью T_s , энергия которых накапливается в НЦ для обеспечения необходимых значений $p_{\rm ofh.1}$ и $p_{\rm лт.1}$. Очевидно, что

$$S_{\mu} = g_{\text{BX,py}} / (g_{\text{BHX,C}\Phi} / \xi_{\text{ad+hu}}), \qquad (3.20)$$

где $g_{\rm вх.ру}$ – отношение сигнал/помеха по мощности на входе РУ в УОСлС, необходимое для обнаружения СлС с заданными $p_{\rm ofh.1}$ и $p_{\rm лт.1}$; $g_{\rm вых.С\Phi}$ – отношение сигнала/помеха по мощности на выходе СФ, $\xi_{\rm ad+hq}$ – потери мощности в амплитудном детекторе (АД) и при цифровом накоплении энергии СлС. Вопрос о расчете выигрыша в отношении сигнал/шум при обработке СлС с помощью устройства свертки или СФ довольно подробно обсуждался в литературе [14,55]. В данном случае необходимо учитывать потери, возникающие из-за рассогласования полос частот, занимаемых принимаемым ДСЧ-ФМн СлС и СФ с учетом числа этих фильтров, перекрывающих область неопределенности СлС по частоте, потери из-за технологических неточностей изготовления СФ, потери при суммировании сигналов с выходов разных СФ. Тогда определив $g_{\rm вых. СФ}$ при известных N, $N_{\rm n}$, $N_{\rm q}$, $p_{\rm ofh.1}$, $p_{\rm лт.1}$ по графикам зависимостей $S_{\rm q}$ от отношения сигнал/шум по мощности при последетекторном цифровом накоплении [60], найдем собственно, *S_u*.

Очевидно, что

$$T_i = T_{\Phi A \Pi \Psi. i} + T_{C x \Pi. i}, \ i = 1, ..., Z,$$
 (3.21)

где

$$T_{\Phi A \Pi \Psi, i} = 3.5 / (0.5 \Delta f_{\Phi A \Pi \Psi, i}) -$$
(3.22)

длительность переходного процесса в кольце ФАПЧ при условии, что несущая частота СлС попала в полосу ее захвата [63] (предполагается, что ширина полосы пропускания системы ФАПЧ равна ширине полосы частот анализируемого интервала области неопределенности СлС по частоте, а ширина полосы частот петлевого фильтра меньше полосы удержания системы ФАПЧ),

$$T_{\text{Cx}\Pi,i} = T_S g_{\text{BX},\text{Cx}\Pi,\text{PY},i} / g_{\text{BX},\text{Cx}\Pi,i} -$$
(3.23)

– длительность времени квазикогерентного накопления энергии СлС в ФНЧ перед РУ_{СхП} (см. рисунок 3.9) на , *i* -ом этапе цикла поиска, $g_{\text{вх.СхП.Ру.}i}$ – отношение сигнал/шум по мощности на входе РУ_{СхП}, необходимое для обнаружения СлС с заданными $p_{\text{обн.}i}$ и $p_{\text{лт.}i}$, i = 1, ..., Z, $g_{\text{вх.СхП.}i}$ – отношение сигнал/шум по мощности на входе СхП.

При анализе значения $g_{\text{вх.СхП.}i}$ необходимо учитывать рассогласование опорного и принимаемого СлС по частоте и временной задержке в пределах основного пика ФН. В [64] для него получено выражение для случая работы УОСлС по ИНФ и выделения на СИНХ 10% мощности радиопередатчика:

$$\sqrt{g_{\text{BX.CxII}.i}} = \sqrt{1.8N/(N_{\text{ab}} + 2/\kappa_{ui})} \text{sinc}\Delta\varphi_i - 1/\sqrt{\mu_{\tau.i}}, \qquad (3.24)$$

где

$$\Delta \varphi_i = \frac{1}{\sqrt{g_{\Phi A \Pi \Psi, B b IX, i}}} = \sqrt{\Delta f_{\Phi A \Pi \Psi, B b IX, i} / g_{B X, Y O C , IC} N F_{\mu H \phi}}$$
(3.25)

– среднеквадратическое отклонение фазы опорного СлС от принимаемого СлС, возникающее из-за влияния помех в кольце ФАПЧ; $g_{\Phi A\Pi \Psi,Bhix,i}$ –отношение сигнал/шум по мощности на выходе кольца ФАПЧ на *i*-м этапе цикла поиска, $g_{Bx,YOC,TC}$ – отношение сигнал/шум по мощности на входе УОСлС, $F_{uh\phi} = 1/T_{hak}$ – ширина спектра «сжатого» СлС,

$$\mu_{\tau.i} = F_{\mu h \phi} / \Delta f_{\text{AIIB}.i}, \qquad (3.26)$$

 $\Delta f_{A\Pi B.i}$ — ширина полосы пропускания выходного фильтра схемы АПВ (см. рисунок 3.9) на *i*-м этапе цикла поиска.

3.10. Пример приближенного расчета характеристик поиска и синхронизации СлС в спутниковой радиосистеме

Рассмотрим вариант использования двоичного ФМн СлС с тактовой частотой $f_{\rm T} = 1/T_9 = 10$ МГц и перескоками по четырем частотам ($N_{\rm q} = 4$), так что общая ширина занимаемой полосы частот составляет примерно 40МГц. Предположим, что каждая пара СФ, предназначенная для обнаружения сегмента СлС на одной из четырех частот, согласована с этим сегментом, сформированным на основе ПСП длиной N = 2048, то есть для каждого из двух СФ длина ПСП составляет $N_{\rm cer} = 1024$. При этом каждая из которых предназначена для обработки сегмента СлС, сформированного на основе ПСП длиной 512. Таким образом, длина сегмента ПСП, использовавшегося для формирования СлС, излученного на одной частоте составит 2048. Как указывалось выше, с целью упрощения устройства обнаружения можно использовать одну и ту же двоичную ПСП для формирования каждого сегмента СИНХ, излучаемого на одной частоте. Таким образом, длина ПСП на периоде ее повторения с учетом четверичной Епоследовательности Велти составит $N_{\rm ICII} = 512 \cdot 2 \cdot 2 \cdot 4 = 8192$.

Используя значения параметров СлС, перечисленные выше, достаточно просто оценить выигрыш в отношении сигнал/шум на выходе идеального приемника, по сравнению с его входом. Но неизбежны дополнительные потери, вызванные воздействием ряда факторов – ситуативных, вызванных условиями использования аппаратуры обнаружения и синхронизации СлС, и технологических. Так, если спутник находится на геостационарной орбите, то для рассмотрения частотных рассогласований необходимо учитывать, прежде всего, нестабильности задающих генераторов и доплеровский сдвиг частоты, вызванный нестабильностью положения спутника на орбите. В этом случае ширина области неопределенности СлС по частоте составит примерно 10кГц [43]. Учитывая, что в случае $z_1 = 3$, получим, рассматриваемом ЧТО максимальное частотное рассогласование для каждого СФ составит приблизительно 3,3кГц. Тогда при учете формы сечения по частоте основного пика ФН СлС получим, что максимальное снижение уровня его мощности на выходе СФ составит примерно 1, 4 раза (1,5дБ), по сравнению с идеальным случаем отсутствия частотного рассогласования между ним и центральной частотой амплитудно-частотной характеристики СФ. Другой источник потерь в отношении сигнал/шум возникают из-за додетекторного суммирования разночастотных откликов СФ, хотя на вход УОСЛС с выхода преобразователя частоты приемника эти сегменты СЛС, излученные на разных частотах, поступают без разрыва фазы высокочастотного колебания, поскольку используется один гетеродин для всех несущих частот. В частности, в результате компьютерного моделирования было показано, что в случае, если среднеарифметическое значение частот сигналов на выходе СФ не менее чем в 4...5 раз больше ширины спектра многочастотного СлС, что выполняется в данном случае, то потери в отношении сигнал/шум по мощности составляют не более (2,5...3) дБ, по сравнению со случаем одночастотного СлС с базой 8192.

Потери, вызванные технологическими погрешностями изготовления СФ на ПАВ, обычно не превышают 0.7 дБ [61], а последовательное включение двух таких фильтров из-за ограничения полосы пропускания ЛЗ приводит к дополнительным потерям порядка 2дБ [61].

Таким образом, суммируя потери в отношении сигнал/шум по мощности, вызванные совокупностью вышеперечисленных факторов, получим их значение, составляющее приблизительно 7дБ, то есть отношение сигнал/шум по мощности на входе НЦ будет приблизительно на $\xi_{\Sigma H \downarrow} = 7$ дБ меньше, по сравнению со случаем идеального когерентного накопления энергии СлС и, в частности, при числе одновременно действующих абонентов в общей полосе частот $N_{ab} = 200$ и отношении сигнал/шум на входе приемника $\kappa_{\rm III} = 0.01$ составит $g_{\rm BbIX,C\Phi} = \frac{1.8N_{\rm IICII}}{\left[\left(N_{\rm a6} + \frac{2}{r}\right)\xi_{\Sigma\rm HII}\right]} = \frac{0,004 \cdot 8192}{5} = 6.5$ раз.

Необходимое число периодов СлС, которые необходимо накопить в НЦ после амплитудного детектора при заданной достоверности обнаружения $(p_{\text{обн.1}} = 0.99, p_{\pi \text{T.1}} = 10^{-6})$, согласно [60] составит $S_{\text{ц}} \approx 30$, а суммарные потери из-за детектирования и цифрового накопления будут порядка 6 дБ. Тогда $T_1 = N_{\Pi \subset \Pi} \left(\frac{1}{f_{\pi}}\right) S_{\mu} \approx 12.2$ мс.

Размеры сечения ДКФ по частоте на выходе УОСлС составят $1/N_{cer}T_3 = (1/1024) \cdot 10 M \Gamma \mu \approx 10 \kappa \Gamma \mu$. Учитывая форму основного пика ДКФ, будем считать, что использование трех СФ с разносом частот на 3.3кГ позволить уменьшить ширину области неопределенности по частоте до этого значения. Далее, полагая, что $F_2 = 3.3 \kappa \Gamma \mu$ и динамика изменения частоты СлС такова, что $\Delta f_{\Phi A\Pi \Psi,i}$ не может быть меньше 250 кГ ц, а ширина полосы пропускания петлевого фильтра не может изменяться произвольно, ограничимся в данном случае рассмотрением двух этапов обнаружения и синхронизации СлС с поисковой системой ФАПЧ, включающей петлевой фильтр с шириной полосы пропускания $\Delta f_{\Phi A\Pi \Psi,2} = 250 \kappa \Gamma \mu$. Тогда $z_2 = \frac{F_2}{\Delta f_{\Phi A\Pi \Psi,2}} - 1 = 12$, а длительность времени, необходимого для устранения частотного рассогласования в ФАПЧ составит $T_{\Phi A\Pi \Psi,2} = \frac{3.5}{0.54 f_{0.0114,2}} = 30$ мс.

ФАПЧ B случае, если схема вошла режим В удержания, среднеквадратическое отклонение начальной фазы принимаемого СлС от начальной фазы сигнала с выхода управляемого генератора (УГ) ФАПЧ (см. в соответствии с (3.25), то есть $\Delta \varphi_2 =$ 3.9) определяется рисунок $\sqrt{\Delta f_{\Phi A \Pi \Psi,2}/g_{\text{вх.УОСлС}} N F_{\text{ин}\phi}} = \left(\frac{250}{0.01.20,10^6}\right)^{1/2} = 0,05$ рад. В этом случае на входе СхП при $\mu_{\tau.2} = 200$, значение отношения сигнал-шум по мощности рассчитано: $g_{\text{BX.CxII.2}} = \left[\sqrt{1.8N/(N_{a6} + 2/\kappa_{\text{III}})} \text{sinc}\Delta\varphi_2 - 1/\sqrt{\mu_{\tau 2}}\right]^2 =$

 $\left[\sqrt{1,8.2040/(200+2/0,01)} \operatorname{sinc} 0,05 - 1/\sqrt{200}\right]^2 = 11,6.$ Тогда согласно (3.23) получим: $T_{\text{СхП.2}} \approx 5$ мс.

Таким образом, оценка приближенного результирующего значения $\overline{T_{max}}$ в соответствии с (3.17) определяется формулой: $\overline{T_{max}} = \overline{T_u} = T_1 + \sum_{i=2}^{Z} T_i z_i = 12.2 + (30 + 5) \cdot 12 \approx 0.43(c).$

Практический интерес представляет исследование зависимости приближенной оценки максимальной длительности времени обнаружения и синхронизации СлС при многоэтапной параллельно-последовательной процедуре поиска параметров его частоты и задержке по времени с изменяющейся от этапа к этапу шириной полосы пропускания петлевого фильтра кольца ФАПЧ. Результаты такого исследования представлены на рисунке 3.11. При расчете графиков предполагалось, что по-прежнему $z_1 = 3$, а при остальных значениях *i* на всех этапах цикла поиска значения z_i будут одинаковыми, кроме последнего этапа, на котором значение z_Z определяется минимально допустимой шириной полосы пропускания петлевого фильтра, которая предположительно равна 250 Гц. Например, если $z_2 = 3$, то ширина полосы пропускания петлевого фильтра на втором этапе цикла поиска по уровню 0.7 составит 1100 Гц, на третьем при $z_3 = 3$ эта ширина будет равна 367 Гц, а на последнем этапе цикла поиска $z_4 = 2$, и последняя анализируемая полоса частот будет равна (367-250) Гц = 117 Гц.

На рисунке 3.11 имеется нижняя дополнительная шкала оси абсцисс, на которой указано общее число этапов цикла поиска при выборе числа частотных интервалов, анализируемых в ФАПЧ на каждом этапе. Подчеркнем, что $\Delta f_{\Phi A\Pi \Psi,Z}$ в любом случае не превышает 250Гц. В итоге, если z_i меняется от 3 до 11, то значение Z не меняется, и равно 3. Значения $\overline{T_{max}}$, выделенные на рисунке 3.11 звездочками, соответствуют Z = 3, $z_1 = 3$, $z_2 = 4$, $z_3 = 5$, то есть разным значениям z_i , и они никак не связаны с кривыми, приведенными на этом рисунокунке. Прямая горизонтальная линия со звездочками на рисунке 3.11 соответствует случаю последовательного корреляционного поиска данного СлС при последовательном анализе частотно-временных интервалов с длительностью

 $T_{3}/2$ и шириной по частоте 250 Гц. Отметим, что в этом случае потери мощности СлС на входе РУ обусловлены лишь доплеровским сдвигом частоты. В данном случае, как и при параллельно-последовательном поиске предполагалось, что $N_{a\delta} = 200$.

Рисунок 3.11 – Длительность времени поиска и синхронизации ФМн СлС с перескоками по четырем частотам при многоэтапном параллельнопоследовательном поиске от числа частотных интервалов, анализируемом на каждом этапе цикла.

Таким образом, как следует из анализа рисунка 3.11, оказывается возможным оптимизировать длительность времени обнаружения и синхронизации СлС, подбирая число этапов многоэтапной параллельнопоследовательной процедуры его поиска. Так, эту длительность можно сократить приблизительно до 0.2 с при выборе $z_i = 4$. В случае использования последовательного корреляционного поиска значение $\overline{T_{max}}$ при таких же исходных условиях составляют несколько десятков секунд.

Выводы по разделу 3

1. Для решения широкого круга проблем, связанных с поиском и синхронизацией слабых по мощности шумоподобных СлС в спутниковых радиосистемах различных типов целесообразно использовать общие принципы построения алгоритмов и соответствующей им аппаратуры оценки параметров частоты и задержки по времени СлС с заранее заданной точностью и достоверностью.

2. Целесообразно использовать многоэтапную параллельнопоследовательную процедуру поиска параметров СлС, реализуемую на основе длительного накопления их энергии с помощью устройств цифровой свертки опорных и принимаемых СлС, либо СФ. Эти устройства обеспечивают требующуюся эффективность работы энергетических обнаружителей на фоне мощных помех при последующем уточнением значений параметров СлС с помощью поисковых схем ФАПЧ и АПВ.

3. Устройство поиска, основанное на цифровой свертке, позволяет обрабатывать значительные длины ПСП и обеспечивает высокую разрешающую способность устройства первоначального обнаружения СлС, поэтому его целесообразно использовать при обнаружении совокупности копий одного и того же СлС, либо разных по структуре СлС, одновременно присутствующих на входе приемника при рассогласованиях их параметров частоты и задержки по времени. После обнаружения всех СлС необходимо для каждого из них использовать отдельный блок, состоящий из систем ФАПЧ и АПВ с перекрестными связями. Лишь при срыве слежения за параметрами СлС в любом из них необходимо возобновлять процедуру обнаружения СлС.

4. Использование аналоговых СФ на ПАВ с целью первоначального накопления энергии СлС приводит к ограничению длительности времени ее накопления, поэтому в этом случае важную роль играет использование последующего цифрового последетекторного накопителя. Данные обстоятельства приводят к более низкой разрешающей способности данного устройства, по

сравнению с предыдущим вариантом построения блока первичного обнаружения СлС. Поэтому его использование рассмотрено для случая спутниковой системы передачи информации с ДСЧ-ФМн СлС для обнаружения ее единственного слабого по мощности синхросигнала, общего для всех ее абонентов.

5. На основе проведенных исследований показано, что развитый для спутниковых радиосистем с шумоподобными СлС многоэтапный параллельнопоследовательный метод совместного обнаружения и оценки их параметров позволяет многократно минимизировать (в несколько сотен раз) длительность времени вхождения в синхронизм аппаратуры их обработки, по сравнению с последовательным корреляционным поиском. В частности, предлагаемый метод поиска параметров СлС при оптимальном распределении мощности передатчика между информационным СлС и синхросигналом по критерию минимума вероятности ошибки при приеме информационных символов позволяет обеспечить длительность времени вхождения в синхронизм наземного приемника спутниковой системы передачи информации с ретранслятором на геостационарной орбите порядка 0,2с, но не более 0,5с.

4. АНАЛИЗ ХАРАКТЕРИСТИК ДВУМЕРНЫХ АВТОКОРРЕЛЯЦИОННЫХ ФУНКЦИЙ ШУМОПОДОБНЫХ СЛОЖНЫХ СИГНАЛОВ И ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ИХ ОБНАРУЖЕНИЯ

4.1. Статистические характеристики двумерных автокорреляционных функций шумоподобных сигналов

Как показано выше в данной диссертации, для широкого класса наземных и спутниковых радиосистем актуальной является задача обнаружения-различения совокупностей шумоподобных СлС с известной структурой, но с неизвестными параметрами – такими как несущие частоты, начальные фазы несущих частот и их смещения по времени относительно условно нулевого момента времени [1,4,12,20, 22,65], причем на входе приемника могут присутствовать как множественные копии одного и того же СлС, отличающиеся друг от друга значениями вышеперечисленных параметров, так и разные по структуре СлС. Их совместное обнаружение-различение по критерию максимального правдоподобия предполагает вычисление их ДКФ с использованием корреляционного приемника [4,10,65].

При неизвестных смещениях несущих частот и задержках по времени опорных и принимаемых СлС напряжение на выходе такого приемника в момент отсчета пропорционально значению основного пика ДКФ какого-то из СлС, просуммированного с боковыми пиками ДКФ его копий, или ДКФ других СлС, имеющих случайное значение, либо сумме боковых пиков ДКФ разных СлС в зависимости от того, какой их набор имеется на его входе [10,66,67]. Обнаружение-различение всех СлС и всех их копий, рассогласованных по частоте и задержке по времени, производится как правило с использованием порогового алгоритма, что позволяет одновременно грубо оценить несущие частоты и задержки по времени всех обнаруженных СлС с точностью, соответствующей размерам проекции любого пика ДКФ на плоскость с координатами,
соответствующими частоте и времени [4,23,47,68,69]. Таким образом, исследование статистических характеристик боковых пиков ДКФ СлС является важным при разработке методики анализа вероятностных характеристик обнаружения-различения совокупностей СлС с неизвестными параметрами, перечисленными выше.

Целью данного раздела является разработка методики расчета ДКФ СлС на частотно-временной плоскости, соответствующей области ее определения, при учете возможности формирования СлС на основе ПСП разных типов, а также исследование параметров функций распределения боковых пиков ДКФ, являющихся случайными величинами при неизвестных частоте и задержке СлС по времени. Результаты этого раздела опубликованы автором данной диссертации в [17,22,38,42].

4.1.1. Методика расчета ДКФ

Двумерная корреляционная функция СлС s(t) является аналогом его функции неопределенности. Ее можно рассматривать как нормированный отклик коррелятора, у которого опорный сигнал $s_{on}(t)$, известный на приемной стороне, отличается от принимаемого сигнала s(t) лишь неизвестным сдвигом по времени τ и частоте Δf , то есть [10]:

$$\chi(\tau,\Delta f) = \frac{1}{E} \int_0^{T_s} \dot{s}(t) \dot{s}_{\text{off}}^*(t+\tau) e^{j2\pi\Delta f t} dt, \qquad (4.1)$$

где E – энергия сигнала, накопленная в течение длительности времени $T_s;\dot{s}(t)$ и $\dot{s}_{on}^*(t)$ – комплексные огибающие опорного и принимаемого сигнала. В данном случае считаем, что $s(t) = s_{on}(t)$, в результате чего $E = a^2 T_s$, где a – амплитуда сигнала. Далее будем рассматривать двоичные фазоманипулированные СлС, любой из которых на длительности периода его повторения описывается выражением:

$$s(t) = a \sum_{i=1}^{N_3} d_i \cos[2\pi f_0(t - (i - 1)T_3)], \qquad (4.2)$$

где $d_i = \pm 1$ – символы ПСП, использовавшейся при формировании СлС [4,10]; $N_{\mathfrak{I}}$

– число элементарных импульсов СлС на длительности периода повторения ПСП; f_0 и T_3 – его несущая частота и длительность элементарного импульса соответственно. Как следует из (4.2), комплексная огибающая данного СлС является действительной функцией, и на длительности периода ее повторения описывается как

$$\dot{s}(t) = a \sum_{i=1}^{N_3} d_i s_0 (t - (i - 1)T_3),$$

где $s_0(t) = \begin{cases} 1 & \text{при } 0 \le t \le T_3 \\ 0 & \text{при } t > T_3 \end{cases}$ – функция, определяющая форму элементарного импульса комплексной огибающей СлС.

Из (4.1) следует, что сечение ДКФ данного СлС по частоте с учетом того, что $\tau = zT_3$ и $\Delta f = \frac{\gamma}{T_s}$, когда $\tau = 0$, то есть при отсутствии сдвига по времени опорного СлС относительно принимаемого, и наличии только частотного сдвига между ними, имеет вид:

$$\dot{\chi}(0,\Delta f) = e^{j\pi\Delta f T_s} \frac{\sin(\pi\Delta f T_s)}{\pi\Delta f T_s}.$$
(4.3)

Из (4.3) следует, что $|\dot{\chi}(0,\Delta f)| = |Re[\dot{\chi}(0,\Delta f)]|$, $Im[\dot{\chi}(0,\Delta f)] = 0$. Типичные виды таких сечений при $T_s = N_3 T_3$, $N_3 = 31$ и 127 показаны на рисунке 4.1. Из его анализа следует, что ширина основного пика сечения ДКФ СлС по частоте при отсутствии рассогласования по времени ($\tau = 0$) равняется $2/T_s$, и обратно пропорциональна длительности времени накопления его энергии в корреляторе. Вид этого сечения ДКФ не зависит от типа ПСП, использовавшейся при формировании СлС.

Структура сечения ДКФ при некотором фиксированном значении Δf в зависимости от значения сдвига s(t) относительно $s_{on}(t)$ по времени τ зависит от режима излучения СлС. Можно выделить непрерывное излучение периодических опорного и принимаемого СлС при длительности времени интегрирования в (4.1), равном T_s .

Рисунок 4.1 – Сечения ДКФ СлС по частоте (при $\tau = 0$) для $N_3 = 31$ (а) и 127(б).

Так же можно рассматривать апериодический режим, когда длительность принимаемого СлС $T_s = NT_3$, $N = N_3 N_{nob}$, где N_{nob} – число повторений ПСП на длительности времени его излучения. Частным случаем этого режима является однократное излучение СлС при $N_{nob} = 1$. Возможно чередование двух разных ПСП, основной и негативной ПСП и т.д.

Из (4.1) следует, что в апериодическом режиме при некотором значении $N_{\text{пов}}$ любое сечение ДКФ СлС при $\tau = zT_3$ ($z = 1 \div N - 1 - \text{сдвиг ПСП}$ опорного и принимаемого СлС) и описывается как:

$$\dot{\chi}(zT_{\mathfrak{z}},\Delta f) = \frac{1}{N}\chi_{\mathfrak{z}}(\Delta f)\sum_{p=1}^{N_{\text{пов}}}\sum_{i=1}^{N_{\mathfrak{z}}}c_{i,z}e^{j\{[(p-1)N_{\mathfrak{z}}+i-1]2\pi\Delta fT_{\mathfrak{z}}\}},$$
(4.4)

где $\chi_{\mathfrak{I}}(\Delta f) = \frac{1}{N} e^{j\pi\Delta fT_s} \frac{\sin(\pi\Delta fT_{\mathfrak{I}})}{\pi\Delta fT_{\mathfrak{I}}} - ДКФ$ элементарного импульса СлС; символы $c_{i,z}$ образуются при перемножении символов ПСП опорного и принимаемого СлС и их значения зависят от режима излучения СлС; z = 1, 2, ..., (N - 1) -число элементарных импульсов СлС длительностью $T_{\mathfrak{I}}$, укладывающихся на интервале времени τ .

Рассмотрим самый простой вариант, соответствующий периодическому излучению опорного и принимаемого СлС при длительности времени интегрирования в (4.1) $T_s = N_{\mathfrak{P}}T_{\mathfrak{P}}$. Тогда в (4.5) формирование символов $c_{i,z}$ можно проиллюстрировать с помощью рисунка 4.2.

Рисунок 4.2 – Формирование символов $c_{i,z}$ в (4.4) при периодическом излучении опорного и принимаемого СлС (а) и апериодическом излучении при $N_{\text{пов}} = 1$ (б).

В этом случае из (4.4) следует, что

$$\dot{\chi}(zT_{\mathfrak{z}},\Delta f) = \chi_{\mathfrak{z}}(\Delta f) \sum_{i=0}^{N_{\mathfrak{z}}} c_{i,z} e^{j[(i-1)2\pi\Delta fT_{\mathfrak{z}}]},$$
(4.5)

то есть при $\Delta f = 0$, что соответствует отсутствию частотного сдвига между опорным и принимаемым СлС,

$$\chi_{\pi a \kappa \phi}(z T_{\vartheta}) = \frac{1}{N_{\vartheta}} \sum_{i=1}^{N_{\vartheta}} c_{i,z}, \qquad (4.6)$$

где $\chi_{\Pi A K \Phi}(zT_3)$ – ПАКФ ПСП, на основе которой сформирован исходный СлС [65,66]. Типичные виды сечений ДКФ при непрерывном излучении опорного и принимаемого СлС и длительности времени интегрирования в (4.4), равной периоду их повторения, показаны на рисунке 4.3 (а) и (б) при N_3 = 127. Рисунок 4.3 (а) соответствует формированию СлС на основе МП, а рисунок 4.3 (б) – на основе ПСП Голда [4,10,65].

Рисунок 4.3 – Сечения ДКФ СлС при $\Delta f = 0$ и периодическом излучении опорного и принимаемого СлС, когда длительность времени интегрирования в (4.4) равна периоду их повторения: (а) соответствует МП, а (б) – ПСП Голда.

Очевидно, что при излучении одиночного СлС, то есть при $N_{\text{пов}} = 1$,

$$\chi_{\text{AKAK}\Phi}(zT_{3}) = \frac{1}{N_{3}} \sum_{i=1}^{N_{3}} c_{i,z}, \qquad (4.7)$$

где $\chi_{A\Pi A K \Phi}(zT_3)$ – апериодическая автокорреляционная функция (АПАКФ) ПСП, поскольку $c_{i,z}$ согласно рисунку 4.3 (б) могут принмать значения -1,1 и 0 (см. рисунок 4.2, б) . Таким образом, при любом z ($z = 0, ..., N_3 - 1$) совокупность символов $c_{i,z}$ ($i = 1, ..., N_3$) можно рассматривать как ПСП, производную от исходной последовательнсти символов d_i . То есть при фиксированном z значения пиков ДКФ СлС зависят от значений символов производной ПСП $c_{i,z}$, образованной перемножением символов исходной ПСП d_i ($i = 1, ..., N_3$), в общем случае повторенной $N_{\text{пов}}$ раз, и ее копии, сдвинутой на z символов.

Как следует из (4.5), $\dot{\chi}(zT_3,\Delta f)$ при произвольном значении Δf имеет действительную и мнимую часть:

$$Re[\dot{\chi}(zT_{3},\Delta f)] = \frac{1}{N} \frac{\sin(\pi\Delta fT_{3})}{\pi\Delta fT_{3}} \sum_{i=1}^{N_{3}} c_{i,z} \cos[(i-1/2)2\pi\Delta fT_{3}, \qquad (4.8)$$

$$Im[\dot{\chi}(zT_{3},\Delta f)] = \frac{1}{N} \frac{\sin(\pi\Delta fT_{3})}{\pi\Delta fT_{3}} \sum_{i=1}^{N_{3}} c_{i,z} \sin[(i-1/2)2\pi\Delta fT_{3}].$$
(4.9)

Программа вычисления и исследования статистических характеристик двумерных автокорреляционных шумоподобных сигналов приводится в приложении Б. Результаты расчета действительной и мнимой частей ДКФ СлС в апериодическом режиме излучения при $N_{\text{пов}} = 1$ и $N_3 = 511$ показаны на рисунке 4.4 и 4.5. Для его формирования использовался неприводимый примитивный полином $f(x) = x^9 + x^5 + 1$.

Рисунок 4.4 – Действительная часть ДКФ СлС, сформированного на основе МП с

 $N_{2} = 511$

Рисунок 4.5 – Мнимая часть ДКФ СлС, сформированного на основе МП с

$$N_{\rm g} = 511.$$

Из анализа рисунки 4.4 и рисунки 4.5 следует, что у мнимой части ДКФ СлС отсутствует центральный пик, поэтому часто в корреляторе вычисляют только ее действительную часть. Но необходимо учитывать, что при наличии еще и фазового сдвига φ несущих частот опорного и принимаемого СлС действительная часть ДКФ уменьшается пропорционально $cos\varphi$, а у мнимой части ДКФ появляется центральный пик, значение которого пропорционально *sinq* [66,68,69]. Поэтому при значительных неизвестных, и тем более, случайных фазовых рассогласованиях несущих частот опорного и принимаемого СлС вычисляют модуль или квадрат ДКФ, которые не зависит от φ .

Как следует из (4.4), для апериодического режима при N_{пов} повторениях одной и той же ПСП

$$\left(\dot{\chi}(zT_{3}, \Delta f) \right)^{2} = \dot{\chi}(zT_{3}, \Delta f) \dot{\chi}^{*}(zT_{3}, \Delta f),$$

$$|\dot{\chi}(zT_{3}, \Delta f)| = \sqrt{\dot{\chi}(zT_{3}, f)} \dot{\chi}^{*}(zT_{3}, \Delta f) =$$

$$= \chi_{3}(\Delta f) \sqrt{\sum_{p=1}^{N_{\text{noB}}} \sum_{i=1}^{N_{3}} \sum_{k=0}^{N_{3}-1} c_{i,z} c_{i+k,z} e^{j\{[k+(p-1)N_{3}]2\pi\Delta fT_{3}\}},$$
(4.10)

где k – номер символа производной ПСП $c_{i,z}$, отсчитываемый от ее *i*-го символа $(k = 0, ..., N_3 - 1)$. Как следует из (4.10) значения пиков модуля ДКФ при фиксированном z зависят от значений символов производной ПСП $c_{i,z}c_{i,k+z}$, образованной перемножением символов исходной ПСП $c_{i,z}$ $(i = 1, ..., N_3)$, в общем случае повторенной $N_{\text{пов}}$ раз, и ее копии, сдвинутой на k символов. Как видно, сечения квадратов ДКФ СлС рассчитываются так же, как и спектральные плотности мощности этих СлС, но при их формировании на основе производных ПСП $c_{i,z}$ $(i = 1, ..., N_3)$ [68,69].

Далее, выразим $|\dot{\chi}(zT_3, \Delta f)|$ через корреляционные функции производных ПСП $c_{i,z}$. Для этого в подкоренном выражении формулы (4.10) для любого z тройную сумму перепишем в следующем виде:

$$A(z,\Delta f) = \sum_{l=1}^{N_{\text{пов}}N_{9}} \sum_{m=1}^{N_{\text{пов}}N_{9}} A_{l}^{m}(z,\Delta f), \qquad (4.11)$$

где $A_l^m(z,\Delta f) = c_{i,z}c_{i+k,z}e^{j\{[k+(p-1)N_3]2\pi\Delta fT_3\}}, \ l = i + (p-1)N_3, \ m = i + z + (p-1)N_3.$

Как видно, для каждого z элементы сумм (4.11) $A_l^m(z, \Delta f)$ образуют двумерный массив чисел, который представим в виде матрицы, приведенной на рисунке 4.6, где m - номер столбца этой матрицы, l - номер строки.

Рисунок 4.6 – Иллюстрация правила группировки элементов сумм $A_l^m(z, \Delta f)$ в (4.11).

Учитывая, что для группировки элементов этой матрицы важное значение имеет их расположение в ней, пронумеруем ее диагонали: пусть $\xi_x(x = 0,1,...,N_{\text{пов}}N_9 - 1)$ – номера диагоналей матрицы, отсчитываемые от главной диагонали с номером ξ_0 , и расположенных выше нее; ξ_x^* ($x = 1,...,N_{\text{пов}}N_9 - 1$) – номера диагоналей, расположенных ниже главной диагонали (позиции элементов матрицы с номерами диагоналей выделены жирными линиями на рисунке 6); $v_y(y = 1,2,...,N_{\text{пов}}N_9)$ – номера элементов, находящихся на ξ_0 -ой диагонали. Тогда у диагоналей с номерами ξ_1 и ξ_1^* значения $y = 1,2,...,(N_9N_{\text{пов}} - 1)$, а у диагоналей с номерами ξ_2 и ξ_2^* значения $y = 1,2,...,(N_9N_{\text{пов}} - 2)$ и т.д.

Как видно, на диагоналях матрицы, симметричных относительно ее главной диагонали, находятся комплексно-сопряженные элементы $A_l^m(z, \Delta f)$, аргументы которых равны $\xi_x 2\pi\Delta f T_3$ и $-\xi_x 2\pi\Delta f T_3$ для диагоналей, находящихся ниже и выше главной диагонали соответственно. При этом модули элементов $A_l^m(z, \Delta f)$ равны $c_{i,z}c_{i+k,z}$, где *i* и *k* определяются в соответствии с формулами:

$$i = v_y - (p_y - 1)N_{\mathfrak{z}},$$
 где $p_y = [v_y/N_{\mathfrak{z}}],$

$$k = \xi_x - (p_x - 1)N_{\mathfrak{z}},$$
 где $p_x = \left[rac{\xi_x}{N_{\mathfrak{z}}}
ight] + 1,$

где [.] – целая часть от числа.

Далее, из анализа рисунки 4.6 следует, что на диагоналях матрицы с номерами $\xi_x = (p_x - 1)N_3$, т.е. кратными N_3 , находятся элементы $A_l^m(z, \Delta f)$, модули которых равны единице и не зависят от структуры ПСП, использовавшейся для формирования СлС (расположения этих элементов в матрице на рисунке 4.6 выделены косой штриховкой). Поэтому учитывая, что общее число таких диагоналей равно $N_{\text{пов}}$, а число элементов $A_l^m(z, \Delta f)$ на каждой из них составляет $N_{\text{пов}}N_3 - \xi_x$, после их суммирования получим выражение для части $A(z, \Delta f)$, зависящей только от $N_{\text{пов}}$ в виде:

$$2\chi_{\text{пов}}(\Delta f) = 2\sum_{p=1}^{N_{\text{пов}}-1} \frac{N_{\text{пов}}-p}{N_{\text{пов}}} \cos(p2\pi\Delta fT_s),$$

где $\chi_{\text{пов}}(\Delta f)$ – составляющая ДКФ, не зависящая от структуры ПСП, использовавшейся для формирования СлС, но определяющаяся только значением $N_{\text{пов}}$. При $N_{\text{пов}} = 1$ значение $\chi_{\text{пов}}(\Delta f)$ при любом Δf считаем равным нулю.

Рассмотрим диагонали матрицы, приведенной на рисунке 4.6, с номерами, не кратными $N_{\mathfrak{I}}$. На позициях этих диагоналей находятся элементы $A_l^m(z,\Delta f)$, модули которых равны $c_{i,z}c_{i+k,z}$, где $k = \xi_x - (p_x - 1)N_3$, причем на каждой диагонали имеются незаштрихованные позиции, число которых равно $N_{9}(N_{\text{пов}} -$ (p-1)), и $N_3 - (p_x - 1)$ позиций с вертикальной штриховкой. Суммы символов на незаштрихованных позициях равны $(N_{\text{пов}} - p)\chi_{\text{ПАКФ, z}}(kT_3) \times \cos\{[(p-1)N_3 + (p-1)N_3 + (p-1)N_3$ $k]2\pi\Delta fT_3$, а на позициях с вертикальной штриховкой - $\chi_{A\Pi AK\Phi,z}(kT_3)\cos\{[(p-1)N_3 + (p-1)N_3 + (p-1)N_3$ k]2 $\pi\Delta fT_{3}$ }, где $\chi_{\Pi AK\Phi. \pi p} (kT_{3})$ и $\chi_{A\Pi AK\Phi. \pi p} (kT_{3}) - \Pi AK\Phi$ и АПАКФ производной соответственно. После суммирования $\Pi C \Pi c_{i,z}$ всех символов на незаштрихованных позициях матрицы, приведенной на рисунке 4.6, И нормирования суммы относительно $N_{\text{пов}}N_{2}$, получаем:

 $2\chi_{\Pi A K \Phi, z}(zT_3, \Delta f) = 2\sum_{p=1}^{N_{\Pi O B}-1} \frac{N_{\Pi O B}-p}{N_{\Pi O B}} \sum_{z=1}^{N_3-1} \chi_{\Pi A K \Phi, z}(kT_3) \times \cos\{[(p-1)N_3 + k]2\pi\Delta fT_3\},$ где $\chi_{K.\Pi A K \Phi}(zT_3, \Delta f)$ – составляющая ДКФ, значения которой зависят от ПАКФ производной ПСП $c_{i,z}$. Соответственно после суммирования всех символов на позициях с вертикальной штриховкой получаем:

 $2\chi_{\text{К.АПАКФ.}z}(zT_3, \Delta f) = \frac{2}{N_{\text{пов}}} \sum_{p=1}^{N_{\text{пов}}} \sum_{z=1}^{N_{3}-1} \chi_{\text{АПАКФ.}z}(kT_3) \times \cos\{[(p-1)N_3 + k]2\pi\Delta fT_3\},$ где $\chi_{\text{К.АПАКФ}}(zT_3, \Delta f)$ – составляющая ДКФ, значения которой зависят от АПАКФ производной ПСП $c_{i,z}$.

Тогда сечения модуля ДКФ в апериодическом режиме при $N_{\text{пов}}$ повторениях одной и той же ПСП описываются следующим образом:

$$|\dot{\chi}(zT_{\mathfrak{z}},\Delta f)| = \chi_{\mathfrak{z}}(\Delta f)\sqrt{(1+2\chi_{\Pi OB}(f)+2\chi_{\Pi AK\Phi}(zT_{\mathfrak{z}},\Delta f)+2\chi_{A\Pi AK\Phi}(zT_{\mathfrak{z}},\Delta f))}.$$
(4.12)

Тогда при $N_{\text{пов}} = 1$ при излучении одиночного СлС из (12) следует:

$$|\dot{\chi}(zT_{\mathfrak{z}},\Delta f)| = \chi_{\mathfrak{z}}(\Delta f)\sqrt{(1+2\chi_{\mathrm{A}\Pi\mathrm{A}\mathrm{K}\Phi}(zT_{\mathfrak{z}},\Delta f))}.$$
(4.13)

Соответственно в периодическом режиме излучения опорного и принимаемого СлС при длительности времени интегрирования $N_{3}T_{3}$ из (4.12) следует:

$$|\dot{\chi}(zT_{\mathfrak{z}},\Delta f)| = \chi_{\mathfrak{z}}(\Delta f)\sqrt{(1+2\chi_{\Pi A K \Phi}(zT_{\mathfrak{z}},\Delta f))}.$$
(4.14)

С использованием выражения (4.14) были рассчитаны модули ДКФ СлС при их формировании на основе МП (рисунок 4.7) и ПСП Голда (рисунок 4.8) при $N_3 = 511.$

Рисунок 4.7 – Типичный вид модуля ДКФ СлС, сформированного на основе МП с $N_2 = 511$.

В соответствии с методикой расчета ДКФ, описанной выше, был рассмотрен случай, когда на входе приемника присутствуют три копии одного и того же СлС, сформированного на основе МП, но смещенные друг относительно друга по времени и частоте. Предполагалось, как входные, так и опорный СлС излучаются в периодическом режиме при длительности времени интегрирования, равном периоду повторения группового СлС. Вид его ДКФ показан на рисунке 4.9.

Рисунок 4.8 – Типичный вид модуля ДКФ СлС, сформированного на основе

ПСП Голда с $N_9 = 511$

Рисунок 4.9 – Модуль ДКФ трех копий СлС, сдвинутых друг относительно друга по частоте и задержке по времени и сформированных на основе ПСП Голда с $N_9 = 511$.

Анализ рисунков 4.7, 4.8, 4.9 показывает, что ДКФ любого СлС имеет основный пик, вид которого не зависит от типа ПСП, использовавшегося при его формировании. Вместе с тем, уровень боковых пиков существенно зависит от типа такой ПСП. Относительные сдвиги пиков результирующей ДКФ по времени и частоте для трех СлС, рассогласованных по частоте и задержке по времени, соответствуют сдвигом этих СлС, предусмотренным при их формировании. Вероятностные характеристики оценки параметров частоты и задержки по времени опорного И принимаемого сигналов в существенной степени определяются уровнем боковых пиков ДКФ, по сравнению с уровнем основного пика.

4.1.2. Статистические характеристики боковых пиков ДКФ СлС

Согласно (4.3) сечения ДКФ по частоте при отсутствии рассогласований по времени опорного и принимаемого СлС ($\tau = zT_3$) являются детерминипрванными функциями, вид которых зависит только от длительности времени накопления энергии СлС в корреляционном приемнике. В то же время сечения ДКФ по времени при отсутствии рассогласований опорного и принимаемого сигналов по частоте ($\Delta f = 0$) зависят от структуры ПСП, использовавшейся при формировании СлС.

Обычно считается, что значения боковых пиков корреляционных функций ПСП при случайном равновероятном сдвиге опорной ПСП относительно прнимаемой распределены по гассовскому закону с нулевым математическим ожиданием и дисперсией, равной q/N_3 , где значение коэффициента q зависит от структуры ПСП, использовавшейся при формировании СлС [65]. Поэтому при данном условии значения пиков сечений ДКФ при $\Delta f = 0$ и сдвигах по времени, кратных T_3 , также распределены по гауссовскому закону, что подтверждается при анализе (4.6), (4.7), поскольку из этих формул следует, что искомые значения формируются при суммировании большого числа случайных величин, значения которых равны 1 или –1. По этой же причине вследствие (4.8), (4.9) значения как

действительных, так и мнимых честей пиков ДКФ при $\Delta f \neq 0$ и сдвигах по времени, кратных T_3 , распредлены по гауссовскому закону. Тогда модули этих пиков распределны по закону Рэлея-Райса [70], а их квадраты – по гауссовскому закону, что соответствует (4.12) – (4.14).

Из (4.12) следует, что при справедливости предположений и характере и параметрах функций распределения боковых пиков корреляционных функций ПСП, использовавшихся при формировании СлС, математическое ожидание бокового пика квадрата ДКФ при любом сдвиге Δf по частоте опорного СлС относительно примаемого не зависит от структуры этой ПСП, и в апериодическом режиме при $N_{\text{пов}}$ ее повторениях описывается формулой:

$$m_{\rm \tiny KB} = \chi_{\rm \tiny 9}^{2}(f)(1+2\chi_{\rm \tiny \Pi OB}(\Delta f));$$

а при $N_{\text{пов}} = 1$ – соответственно формулой:

$$m_{\rm KB} = \chi_{\vartheta}^2(\Delta f). \tag{4.15}$$

Среднеквадратические отклонения боковых пиков квадратов ДКФ при любом значении Δf можно получить из формул (4.12) – (4.14). В частности, в апериодическом режиме при $N_{\text{пов}}$ повторениях одной и той же ПСП получим:

$$\sigma_{\rm KB} = 1.4\chi_{\rm g}^2 (\Delta f) \sqrt{\left\{\sigma_{\Pi A K \Phi}^2 \left(\frac{2N_{\Pi O B}}{3} - 1\right) + \frac{\sigma_{A \Pi A K \Phi}^2}{N_{\Pi O B}}\right\}/N_{\Pi O B}},\tag{4.16}$$

где $\sigma_{\Pi A K \Phi}^2$ и $\sigma_{A \Pi A K \Phi}^2$ – дисперсии боковых пиков ПАКФ и АПАКФ ПСП, использовавшихся при формировании СлС. Таким образом, воспользовавшись таблицуей 3.2.1 из [65], где приведены значения этих дисперсий для основных типов ПСП, использующихся в настоящее время для формирования СлС, по формулам (4.15) и (4.16) можно найти и оценки параметров функций распределения квадратов боковых пиков их ДКФ.

Результаты непосредственного расчета статистических характеристик квадратов сечений ДКФ по частоте при z = 1 для разных типов СлС, полученные путем их компьютерного моделирования, приведены в таблице 4.1, а для сечений квадратов ДКФ по времени при $\Delta f N_{9}T_{9} = 1 - в$ таблице 4.2. Во второй колонке каждой из этих таблиц указываются типы ПСП, использовавшиеся при формировании СлС, соответствующие их обозначениям в таблице 3.2.1 из [65]. С

целью исключения зависимостей статистических характеристик квадратов ДКФ от частоты их рассчитанные сечения нормировались относительно $\chi_{9}^{2}(\Delta f)$ для случая $N_{\text{пов}} = 1$. А при $N_{\text{пов}} = 1$ из результата нормировки еще и вычиталась функция $(1 + 2\chi_{\text{пов}}(\Delta f))$.

Таблица 4.1. Статистические характеристики квадратов сечений ДКФ вдоль оси частот

При z=1,	Типы	Математическое ожидание ДКФ			Дисперсия ДКФ		
N_{2}	полиномов	Re	Im	Модуль	Re	Im	Модуль
127	$M_4, N_{пов} = 1$	-0,005	0,003	0,0497	0,0018	0,0018	0,0011
127	$M_4, N_{\text{пов}} = 3$	-0,0049	0,0032	0,0866	0,0049	0,0049	0,0023
127	$M_4 \oplus^* M_{10}, N_{\text{пов}} = 1$	0,0043	0,0037	0,0467	0,0018	0,0018	0,0014
127	$M_4 \oplus M_{10}, N_{пов}=3$	0,0136	0,0034	0,091	0,0055	0,0055	0,003
127	$(M_4 \oplus M_{10}) \oplus$	0,0086	0,0058	0,0727	0,0036	0,0035	0,0019
	⊕ (M ₄ ⊕ M ₂)						
255	M ₂ , N _{пов} =1	-0,0025	0,0016	0,0351	8,82×10 ⁻⁴	8,80×10 ⁻⁴	5,37×10 ⁻⁴
255	M ₂ , <i>N</i> _{пов} =3	0,0019	0,003	0,00674	0,0028	0,0027	9,73×10 ⁻⁴
511	$M_1, N_{\text{пов}} = 1$	-0,0012	9,56×10 ⁻⁴	0,0248	4,41×10 ⁻⁴	4,40×10 ⁻⁴	2,69×10 ⁻⁴
511	М ₁ , <i>N</i> _{пов} =3	-0,0036	0,0011	0,0461	0,0014	0,0014	7,04×10 ⁻⁴
511	$M_1 \oplus M_4$, $N_{пов} = 1$	0,0011	9,67×10 ⁻⁴	0,0231	4,44×10 ⁻⁴	4,43×10 ⁻⁴	3,56×10 ⁻⁴
511	$M_1 \oplus M_4$, $N_{\text{IIOB}}=3$	-0,0012	7,71×10 ⁻⁴	0,0444	0,0014	0,0014	7,38×10 ⁻⁴
1023	M ₂ , N _{пов} =1	-6,17×10 ⁻⁴	4,38×10 ⁻⁴	0,0176	$2,20 \times 10^{-4}$	$2,20 \times 10^{-4}$	1,32×10 ⁻⁴
1023	M ₂ , <i>N</i> _{пов} =3	$-5,47 \times 10^{-4}$	-9,16×10 ⁻⁴	0,0305	6,70×10 ⁻⁴	6,67×10 ⁻⁴	4,05×10 ⁻⁴
1023	$M_2 \oplus M_{16}, N_{пов}=1$	5,35×10 ⁻⁴	4,66×10 ⁻⁴	0,0164	2,21×10 ⁻⁴	$2,20 \times 10^{-4}$	1,74×10 ⁻⁴
1023	М ₂ ⊕ М ₁₆ , <i>N</i> _{пов} =3	0,0017	4,70×10 ⁻⁴	0,0299	6,70×10 ⁻⁴	6,68×10 ⁻⁴	4,44×10 ⁻⁴
Примечание: *- обозначение суммирования по модулю 2 МП, сформированных на основе двух							
полиномов для формирования ПСП Голда							

Как следует из анализа таблиц 4.1 и 4.2 параметры функции распределения пиков квадрата ДКФ СлС пропорциональны величине, обратной произведению длины ПСП на число ее повторений. При использовании одних и тех же длин ПСП и числа их повторений эти параметры незначительно флуктуируют при изменении ПСП и ее типа. Для каждого случая по данным таблицы 4.1, 4.2 можно вычислить значения параметров функций распределения как действительной части ДКФ, которая вычисляется в корреляционном приемнике в случае, когда известен фазовый сдвиг несущей частоты опорного СлС относительно принимаемого, так и параметры функции плотности вероятностей Рэлея-Райса [70]. При неизвестном или флуктуирующем фазовом сдвиге колебаний этих частот в квадратурного корреляторе вычисляется модуль ДКФ СлС, боковые пики которого распределены по закону Рэлея-Райса [70]. Параметры этого закона распределения так же можно рассчитать по данным таблиц 4.1 и 4.2. В то же время боковые пики квадрата ДКФ распределены по гауссовскому закону, параметры которого так же приведены в таблицах 4.1 и 4.2.

Таблица 4.2. Статистические характеристики квадратов сечений ДКФ вдоль оси времени

При	Типы полиномов	Математическое ожидание ДКФ			Дисперсия ДКФ		
$fN_{\circ}T_{\circ} = 1,$ N_{\circ}		Re	Im	Модуль	Re	Im	Модуль
127	М4, <i>N</i> _{пов} =1	0,0017	-0,0047	0,0358	0,0073	6,16×10 ⁻⁴	0,0066
127	М4, <i>N</i> _{пов} =3	0,0021	-0,0043	0,0596	0,0078	0,002	0,0062
127	М₄ ⊕ М ₁₀ , <i>N</i> _{пов} =1	0,0183	-0,0066	0,0654	0,0105	0,0015	0,0081
127	M ₄ ⊕ M ₁₀ , N _{пов} =3	0,0228	-0,0063	0,0842	0,0117	0,0026	0,0078
127	$(\mathbf{M}_4 \oplus \mathbf{M}_{10}) \oplus$ $\oplus (\mathbf{M}_4 \oplus \mathbf{M}_2)$	0,0207	-0,0082	0,0701	0,0106	0,0017	0,0079
255	M ₂ , <i>N</i> _{пов} =1	8,17×10 ⁻⁴	-0,0023	0,023	0,0036	3,14×10 ⁻⁴	0,0034
255	М ₂ , <i>N</i> _{пов} =3	6,65×10 ⁻⁴	-0,0022	0,0541	0,0048	0,0016	0,0034
511	М ₁ , <i>N</i> _{пов} =1	3,75×10 ⁻⁴	-0,0011	0,0151	0,0018	$1,58 \times 10^{-4}$	0,0017
511	М ₁ , <i>N</i> _{пов} =3	4,59×10 ⁻⁴	-0,0011	0,044	0,0025	0,0011	0,0017
511	$M_1 \oplus M_4$, $N_{\text{пов}}=1$	0,004	$-1,24 \times 10^{-4}$	0,0384	0,0029	7,45×10 ⁻⁴	0,0022
511	$M_1 \oplus M_4$, $N_{пов}=3$	0,0026	0,002	0,0541	0,0038	0,0014	0,0023
1023	M ₂ , <i>N</i> _{пов} =1	1,91×10 ⁻⁴	$-5,58 \times 10^{-4}$	0,0098	8,99×10 ⁻⁴	7,85×10 ⁻⁵	8,92×10 ⁻⁴
1023	M ₂ , <i>N</i> _{пов} =3	2,14×10 ⁻⁴	$-5,66 \times 10^{-4}$	0,0323	0,0013	5,51×10 ⁻⁴	8,39×10 ⁻⁴
1023	$M_2 \oplus M_{16}$, $N_{пов} = 1$	1,75×10 ⁻⁴	$-5,34 \times 10^{-4}$	0,0216	0,0014	3,71×10 ⁻⁴	0,0013
1023	$M_2 \oplus M_{16}, N_{\text{пов}}=3$	1,69×10 ⁻⁴	$-5,66 \times 10^{-4}$	0,0387	0,002	8,01×10 ⁻⁴	0,013

4.2. Вероятностные характеристики обнаружения и правильной оценки параметров шумоподобных СлС

Целью данного раздела является разработка методики расчета эффективности совместного обнаружения и оценки параметров периодического шумоподобного СлС с учетом ограничений на длительность ПСП, которая может обрабатываться в устройстве его цифровой свертки [41].

Показателем эффективности обнаружения СлС является вероятность его правильного обнаружения *P*_{обн} в одном из интервалов области неопределенности по частоте и задержке по времени при заданной вероятности ложной тревоги Р_{лт} в зависимости от отношения сигнал/шум на входе РУ приемника при наличии входного сигнала. Но это отношение зависит от длительности времени накопления энергии сигнала в приемнике, поэтому при заданных $P_{\rm ofh}$ и $P_{\rm JT}$ эффективности обнаружения будет функция показателем основным ОТ необходимой длительности этого накопления, то есть длительности СлС, свертки которого вычисляются в приемнике. Но, как показано выше, существуют ограничения на длительность ПСП, обрабатываемой в приемнике. Поэтому с целью обеспечения требующихся значений Робн и Рлт в устройстве свертки при любом отношении сигнал/шум на входе приемника можно рассматривать использование энергетического накопителя на его выходе.

Вероятность ложного обнаружения-различения *m* ортогональных сигналов на фоне белого гауссовского шума можно записать в следующем виде [21]:

$$P_{\rm AT} = 1 - (1 - P_{\rm AT0})^m, \tag{4.17}$$

где

$$P_{\rm JT0} = \int_{bq}^{\infty} zexp(-\frac{z^2}{2}) dz = \exp(-\frac{b^2 q^2}{2}) \approx m P_{\rm JT0}$$
(4.18)

 вероятность ложного обнаружения сигнала, в действительности отсутствующего на входе приемника при некогерентном приеме;

$$m = 2Nm_{\rm q},\tag{4.19}$$

и в данном случае пропорционально числу двумерных интервалов области неопределенности СлС по времени и частоте, размеры каждого из которых соответствуют размерам проекции основного пика его ДКФ на плоскость частотавремя (N – длина (период) ПСП, $m_{\rm q} = F/2F_s$ – число опорных частот, формируемых на входе устройства свертки, F и F_s – ширина области неопределенности по частоте и ширина спектра СлС соответственно; b – пороговый уровень, нормированный относительно максимального значения сигнальной составляющей на выходе УСПСП, q^2 – отношение сигнал/шум по мощности на входе РУ приемника.

Как следует из (4.18),

$$bq = \sqrt{2ln(\frac{m}{P_{\text{AT}}})},\tag{4.20}$$

то есть отношение сигнал/шум, требующееся для обеспечения заданного $P_{n\tau}$, пропорционально квадратному корню из ln(m).

Вероятность правильного обнаружения СлС [4]:

$$P_{\text{обн}} = \int_{bq}^{\infty} zexp\left(-\frac{z^2+q^2}{2}\right) I_0(zq) \left[1 - \exp(-\frac{z^2}{2})\right]^{m-1} dz, \qquad (4.21)$$

где $I_0(.)$ – модифицированная функция Бесселя нулевого порядка. Заметим, что если функцию $[1 - \exp(-\frac{z^2}{2})]^{m-1}$ аппроксимировать единичным скачком, то есть считать ее значения равными нулю при $z < z_0$ и равными единице при $z \ge z_0$, то при $q > z_0$ вероятность правильного обнаружения СлС приблизительно равна единице, где $z_0 = \sqrt{2ln(m-1)}$. На практике это невозможно, так как в этом случае bq должно быть меньше q. Но так как значение порогового уровня bqбольше z_0 , то вероятность правильного обнаружения стремится к единице тогда, когда

$$q^2 > 2ln(\frac{m}{P_{\rm JT}}). \tag{4.22}$$

Из (4.22) следует, что для увеличения вероятности правильного обнаружения СлС необходимо увеличивать отношение сигнал/шум на входе РУ. Но при заданных *P*_{обн} и *P*_{лт} необходимое отношение сигнал/шум на входе РУ

приемника, то есть q^2 , определяется отношением шум/сигнал на его входе $\left[\frac{P_{\rm III}}{P_{\rm c}}\right]_{\rm BX}$ и длительностью времени накопления энергии периодического сигнала в нем, то есть от величины kN, где k – доля периода ПСП или число ее периодов, на основе которых сформирован СлС, энергия которыго накапливается в приемнике. Таким образом, на выходе устройства свертки СлС максимальное значение отношения сигнал/шум составит $q^2 = kN/(\left[\frac{P_{\rm III}}{P_{\rm c}}\right]_{\rm BX} + \sigma^2)$, где σ^2 – дисперсия боковых пиков нормированной ДКФ СлС при длине ПСП kN [65]. В данном случае рассматривается гауссовская аппроксимация боковых пиков ДКФ, значения σ^2 которых для типичных типов ПСП, использующихся для формирования СлС, исследованы выше и приведены в таблице 4.1 и 4.2. Тогда согласно [72]

$$P_{\text{обH}} = \int_{bq}^{\infty} z exp\left(-\frac{z^2 + q^2}{2}\right) I_0(zq) dz.$$
(4.23)

Для случая формирования СлС на основе МП рассчитанные зависимости $P_{\text{обн}}$ от $\left[\frac{P_{\text{III}}}{P_{\text{с}}}\right]_{\text{вх}}$ при $P_{\text{лт}} = 10^{-4}$ и 10^{-6} , k = 0.1, 0.3, 0.5, 1, 3, 5, 10, 50, $m_{\text{ч}} = 10$ приводятся на рисунке 4.10 и рисунке 4.11. При расчетах учитывалась оконная функция Дольфа-Чебышева, использующаяся при формировании СлС [72].

Как следует из анализа этих рисунков, уровень боковых пиков ДКФ СлС влияет на вероятность его правильного обнаружения только при малых отношениях шум/сигнал на входе приемника, меньших 10 (то есть когда шум по мощности превосходит полезных сигнал не более чем в 10 раз). При слабых сигналах, когда требуется накапливать энергию нескольких десятков периодов СлС, можно не учитывать характеристики ДКФ СлС, поскольку основное влияние на вероятность правильного обнаружения оказывает уровень шума на входе приемника.

Рисунок 4.10 – Вероятностные характеристики правильного обнаружения и оценки параметров СлС, сформированного на основе МП при *N* = 511.

Рисунок 4.11 – Вероятностные характеристики правильного обнаружения СлС сформированного на основе МП при *N* = 1023.

Рассматриваемое устройство обнаружения СлС может использоваться и при

127

наличии на входе приемника нескольких копий одного и того же СлС, сдвинутых друг относительно друга по времени больше, чем на длительность элеметарного импульса T_3 , и, возможно, по частоте. В этом случае $q^2 = kN/([\frac{P_{\rm III}}{P_c}]_{\rm BX} + N_c\sigma^2)$, где N_c – число копий одного и того же СлС, одновременно присутствующих на входе приемника. Кроме того, вероятность правильного обнаружения $P_{\rm o6H1} = P_{\rm o6H}^{N_c}$. Соответствующие вероятностные характеристики в случае присутствия на входе приемника одновременно трех СлС, сформированных на основе МП, приводятся на рисунке 4.12, а на основе ПСП Голда – на рисунке 4.13.

Как следует из анализа этих рисунков, при увеличении N_c характеристики эффективности обнаружения одновременно всех копий СлС, рассогласованных по времени и частоте, незначительно ухудшаются, по сравнению со случаем оценки параметров лишь одного сигнала. Кроме того, при слабых сигналах, то есть при больших значениях $\left[\frac{P_{\rm m}}{P_{\rm c}}\right]_{\rm Bx}$ не имеет значения, какие ПСП из рассмотренного набора используются для формирования СлС – МП или ПСП Голда.

Рисунок 4.12 – Вероятностные характеристики правильного обнаружения и оценки параметров одновременно трех копий одного и того же СлС, рассогласованных по времени и частоте, при их формировании на основе МП с

Рисунок 4.13 – Вероятностные характеристики правильного обнаружения и оценки параметров одновременно трех копий одного и того же СлС, рассогласованных по времени и частоте, при их формировании на основе ПСП Голда с *N* = 1023.

Кроме того, можно рассматривать вариант УСПСП, содержащий блоки вычисления сверток сразу нескольких ожидаемых СлС, сформированных на основе разных ПСП одного и того же типа. В этом случае для расчета вероятностных характеристик правильного обнаружения в вышеприведенных формулах необходимо вместо *m* использовать mN_c , где N_c – число разных сигналов, одновременно присутствующих на входе приемника Кроме того, $q^2 = kN/(\left[\frac{P_{ul}}{P_c}\right]_{BX} + N_c(\sigma^2 + \sigma_{B3}^2))$, а результирующая вероятность правильного обнаружения так же, как и в предыдущем случае $P_{06H1} = P_{06H}^{N_c}$, где σ_{B31}^2 – результирующая дисперсия боковых пиков ДКФ. Вероятностные характеристики правильного обнаружения и оценки параметров совокупности, сформированных на основе разных МП, в общем случае рассогласованных по времени и частоте,

приводятся на рисунке 4.14, а на основе ПСП Голда – на рисунке 4.15.

Рисунок 4.14 – Вероятностные характеристики правильного обнаружения и оценки параметров одновременно трех разных СлС, рассогласованных по времени и частоте, при их формировании на основе МП с *N* = 1023.

Как следует из анализа этих рисунков, вероятностные характеристики правильного обнаружения одновременно нескольких разных СлС, рассогласованных по времени и частоте, несколько хуже, чем в случае рассогласованных копий одного и того же сигнала. Это объясняется увеличением числа двумерных интервалов области неопределенности *m*, которые необходимо просматривать в РУ.

По оси абсцисс на рисунках 4.10 – 4.15 отложенно отношение мощности шума к мощности полезного сигнала на входе приемника, измеряемое в разах. Ниже приведена неравномерная шкала с переводом значений $\left[\frac{P_{\text{III}}}{P_{\text{III}}}\right]_{\text{BX}}$ в дБ.

Рисунок 4.15 – Вероятностные характеристики правильного обнаружения и оценки параметров одновременно трех разных СлС, рассогласованных по времени и частоте, при их формировании на основе ПСП Голда с *N* = 1023.

Выводы по разделу 4

1. Разработанная ДКФ СлС методика расчета позволила выявить значений боковых корреляционных функций ПСП. взаимосвязь пиков использованных при их формировании, и пиков действительных частей, модулей и квадратов ДКФ СлС, на основе которых они формируются. Такой подход позволяет без детального расчета самих ДКФ в различных режимах излучения их статистические характеристики СлС определить с использованием соответствующих параметров функций распределения боковых пиков корреляционных функций ПСП, приведенных в [23]. Тем не менее, было проведен расчет ДКФ разных СлС и исследованы их статистические характеристики позволило обосновать . ЧТО достоверность подхода, использованного в данной работе.

2. Увеличение длины ПСП, которая используется для формирования СлС при увеличении ширины занимаемой им полосы или увеличении его длительности, приводит к уменьшению уровня боковых пиков ДКФ относительно уровня центрального пика, в результате чего форма этой функции приближается к кнопочной.

3. Среднеквадратическое отклонение боковых пиков модуля ДКФ СлС, сформированного MΠ, относительно ИХ на основе среднего значения приближается к нулю, и существенно (приблизительно в 3 раза) меньше, чем для случая обнаружения с помощью коррелятора трех сдвинутых по частоте и временной задержке копий одного и того же СлС, сформированного на основе этой МП. Кроме того, виды ДКФ СлС, сформированных на основе разных МП в периодическом режиме при длительности времени интегрирования в корреляторе, их периоду повторения, практически одинаковые, а в случае кратном использования разных ПСП Голда - они разные, хотя и имеют одинаковые значения статистических характеристик.

ЗАКЛЮЧЕНИЕ

1. Рассмотрена проблема построения алгоритмов быстрых спектральных преобразований в усеченных базисах функций Уолша-Адамара и, в частности, в прямоугольном ортогональном базисе функций Радемахера, для ускоренного поиска (синхронизации) шумоподобных сложных сигналов, формируемых на основе вариантов линейных рекуррентных ПСП (М-последовательностей). Показано, что преобразование входного сигнала именно в этих системах дискретных функций позволяет обеспечить значительный выигрыш по числу элементарных арифметических операций, по сравнению с преобразованием в других ортогональных системах.

2. Разработаны варианты построения матриц-циркулянтов любой МП на основе автоморфных мультипликативных групп расширенного поля Галуа, построенного при помощи неприводимого примитивного полинома, на основе которого сформирована исходная МП. Результатом данного подхода являются выявленные новые способы преобразования матриц-циркулянтов МП к матрице функций Уолша, упорядоченной по степеням первообразного элемента поля. Впервые показано, что в зависимости от начальных условий преобразования совокупность любого числа любых циклических сдвигов МП, сдвинутых друг относительно друга на один символ, может быть преобразована к любым строкам упорядоченной матрицы функций Уолша, следующим друг за другом. Данное обстоятельство позволяет упростить алгоритм синхронизации МП при известном диапазоне ее циклических сдвигов, особенно в случае больших периодов ее повторения, а также снизить вычислительную сложность алгоритма обработки при работе в усеченном базисе функций Уолша-Адамара.

3. На основе анализа структур изоморфных мультипликативных групп расширенных полей Галуа установлено, что любой циклический сдвиг ПСП Голда может быть преобразован к функции, принадлежащей к полному набору аналогов функций Радемахера соответствующей размерности. Это позволило разработать новый алгоритм быстрой синхронизации последовательностей Голда

133

на основе вычисления их дискретной свертки с использованием быстрого спектрального преобразования в усеченном базисе функций Уолша-Адамара. Выигрыш разработанного алгоритма по числу арифметических операций, по традиционным способом вычисления дискретной сравнению с свертки. последовательности Ν. N =увеличивается с ростом длины И при 511, 1023 составляет приблизительно 3,4 раза.

4. Рассмотрена проблема обнаружения совместного (поиска) И синхронизации одного или сразу нескольких слабых шумоподобных сложных сигналов, рассогласованных по несущей частоте, фазе частоты и задержке по Предполагается времени, аппаратуре спутниковой радиосистемы. В использование многоэтапной параллельно-последовательной процедуры обнаружения и синхронизации сигналов с совместно работающими устройствами обнаружения и слежения за изменением параметров сигналов с формированием их копий в квазикогерентном приемнике. Для заранее заданных значений характеристик погрешностей оценки несущих частот и задержек по времени шумоподобных сложных сигналов разработана методика приближенной оценки длительности времени их обнаружения и синхронизации в спутниковой радиосистеме. Показано, что при отношении сигнал/шум порядка (-10...-40) дБ эта длительность времени может составить менее 0.5 с при учете возможностей современных методов обработки сигналов И технологических решений, использующихся при их реализации.

5. Разработана методика расчета и анализа статистических характеристик боковых пиков двумерных и авто- и взаимно корреляционных функций шумоподобных сложных сигналов, определенных как поверхности в трехмерном пространстве с координатами, соответствующими частоте и времени. Суть и новизна методики состоит в установлении для любой двумерной корреляционной функции сигнала взаимосвязи значений ее боковых пиков, а также параметров их функции распределения, со спектральной плотностью мощности исходного сигнала, рассчитанной по его реализации конечной длительности, и, в конечном итоге, - с характеристиками боковых пиков различных одномерных

134

автокорреляционных функций псевдослучайной последовательности, на основе которой он сформирован. Результатом данного подхода являются установленные количественные взаимосвязи статистических характеристик боковых пиков корреляционной функции ллиной двумерной сложного сигнала с псевдослучайной последовательности, соответствующей ему, в зависимости от ее типа. Исследования проведены для М-последовательностей и кодов Голда как на основе полученных аналитических выражений при известных параметрах функций распределения боковых пиков одномерных корреляционных функций псевдослучайных последовательностей, так и путем непосредственного расчета этих функций и статистических характеристик их пиков. Указывается, что результаты данной работы позволяют существенно упростить исследование вероятностных характеристик обнаружения и оценки параметров совокупностей шумоподобных сложных сигналов.

Таким образом, цель диссертационного исследования достигнута, научная задача решена.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

АД	амплитудный детектор
АКФ	автокорреляционная функция
АПАКФ	апериодическая автокорреляционная функция
АПВ	автоматическая подствройка времени
АУ	арифметичческое устройство
АЦП	аналого-цифровой преоразователь
АЧХ	амплитудно-частотная характеристика
БПА	быстрое преобразование Адамара
ВКΦ	взаимно-корреляционные функции
ГМВ	Гордона-Милса-Велча (последовательность)
ГОЧ	генератор опорной частоты
ГПГ	генератор поля Галуа
ГТИ	генератор тактовых импульсов
ГУН	генератор, управляемый напряжением
ДКФ	двумерная корреляционная функция
ДО	детектор огибающей
ДППВ	двухполупериодный выпрямитель
ДСЧ-ФМн	дискретный частотный сигнал с фазовой манипуляцией
ИНФ	информационный сигнал
Кл	КЛЮЧ
Кор	коррелятор
КС	канал сихронизации
Л3	линия задержки
М	модулятор
МΠ	М-последовательность
НЦ	накопитель цифровой
ОЗУ	оперптивное запоминающее устройство
ПАВ	поверхностные акустические волны
ПАКФ	периодическая автокорреляционная функция

ПВКФ	периодическая взаимно корреляционная функция
ПСП	псевдослучайная последовательность
ПЧ	промежуточная частота
РУ	решающее устройство
C3	схема захвата
СИНХ	синхросигнал
СлС	сложный сигнал
СМ	смеситель
СΦ	согласованный фильтр
СхП	схема подтверждения
СЧ	счетчик
ТΓ	тактовый генератор
У	линейный усилитель
УВКОСлС	устройство выделения квазикогерентных опорных СлС
УВЧ	усилитель высокой частоты
УГ	управляемый генератор
УОИС	устройство обработки информационных сигналов
УОСлС	устройство обнаружения СлС
УПЧ	усилитель промежуточной частоты
УСПСП	устройство свертки ПСП
ФАПЧ	фазовая автоподстройка частоты
ФМн	фазоманипулированный (сигнал)
ΦН	функция неопределенности
ФНЧ	фильтры нижних частот
ЦПОС	цифровой сигнальный процессор

СПИСОК ЛИТЕРАТУРЫ

1. Горгадзе, С.Ф. Обнаружение и синхронизация слабых по мощности шумоподобных сигналов в спутниковой радиосистеме / С.Ф. Горгадзе, Ш.Д. Ву. – DOI: 10.36724/2072-8735-2023-17-8-4-20 // Т-Comm: Телекоммуникации и транспорт – 2023. – Т. 17. №8. – С. 4-20.

2. Горгадзе, С.Ф. Синхронизация М-последовательностей на основе быстрого преобразования Адамара / С.Ф. Горгадзе, Ш.Д. Ву., А.В.Ермакова // Радиотехника и Электроника. 2024. – Т. 69. № 2. – С.122-136.

3. Горгадзе, С.Ф. Синхронизация последовательностей Голда на основе быстрого преобразования в усеченном базисе функций Уолша-Адамара / С.Ф. Горгадзе, Ш.Д. Ву., А.В.Ермакова // Радиотехника и Электроника. 2024. – Т. 69. № 2. – С.137-145.

4. Варакин, Л.Е. Системы связи с шумоподобными сигналами / Л.Е. Варакин.
 – Москва: Радио и связь, 1985. – 384с.

5. Смирнов, Н.И. Длительность времени вхождения в синхронизм приемника шумоподобного сложного сигнала в спутниковой асинхронной системе передачи информации / Н.И. Смирнов, С.Ф. Горгадзе // Зарубежная радиоэлектроника. – 1997. – №5. – С. 41-51.

6. Middlestead, R. W. Digital Communications with Emphasis on Data Modems. Theory, Analysis, Design, Simulation, Testing and Applications / R. W. Middlestead – Lesly (USA): Wiley, 2017. – 832 p.

7. Лосев, В.В. Поиск и декодирование сложных дискретных сигналов / В.В. Лосев, Е.Б. Бродская, В.И. Коржик ; Под ред. В.И.Коржика. – М.: Радио и связь, 1988. – 224с.

8. Maral, G. Satellite Communications Systems / G. Maral, M. Bousquet, Z. Sun. – United Kingdom: Wiley, 2020 – 800 p.

 Лосев, В.В. Распознование адресных последовательностей при помощи быстрых преобразования / В.В. Лосев, В.Д. Дворников // Радиотехника и Электроника. – 1983. – №8. – С.15-40. 10. Ипатов, В.П. Широкополосные системы и кодовое разделение каналов. Принципы и приложения. / В.П. Ипатов - М.: Техносфера, 2007. – 487 с.

11. Beard, C. Wireless Communication Networks and Systems / C. Beard, W. Stallings – L: Pearson, 2016. – 595 p.

12. Горгадзе, С.Ф. Синхронизация в инфокоммуникационных системах./ С.Ф. Горгадзе – М.: Медиа Паблишер, 2022. – 44 с.

13. Волков, Р.В. Модель измерения временной задержки и частотного сдвига радиосигнала, принятого от спутника-ретранслятора при определении местоположения земной станции/ Р.В. Волков, В.Н. Саяпин, В.В. Севидов // Т-Сотт: Телекоммуникации и транспорт. – 2016. – Т. 10. № 9. – С. 14-18.

14. Кулакова, В. И. Обнаружение слабых сигналов методом взаимной корреляции с компенсацией фазовых нестабильностей при радиоконтроле частотного ресурса спутниковых систем связи / В. И. Кулакова // Системы управления, связи и безопасности. – 2020. – № 1. – С. 33-48.

15. Смольянинов, В.М. Некоторые свойства дискретных частотномодулированных сигналов, определенных на обощенном базисе Виленка-Крестенсона / В.М. Смольянинов, Л.Е. Назаров, И.В. Прокофьев. // Радиотехника и Электроника. – 1989. – Т. 34. № 8. – С.1686-1689.

16. Li Ping, W. K. Low-Rate Turbo-Hadamard Codes / W. K. Li Ping, K. Y. Leung.
// IEEE Transactions on Information Theory. 2003. – V. 49. № 12. – P. 3213.

17. Ву, Ш.Д. Статистические характеристики двумерных автокорреляционных функций шумоподобных сигналов / Ш.Д. Ву. // Электросвязь. – 2024. – № 6. – С. 53-61.

18. Потапов, А.А. Определение порогов обнаружения радиосигналов для метода энергетического детектора / А.А. Потапов // Журнал радиоэлектроники [электронный журнал]. – 2021. – №9.

19. Suneel, A. Peak detection based energy detection of a spectrum under Rayleigh fading noise environment / A. Suneel, S. Shiyamala. – DOI: 10.1007/s12652- 020-01818-1. // Journal of Ambient Intelligence and Humanized Computing. – $2021. - N_{2}12. - P.4237-4245.$

20. Ву, Ш.Д. Устройство ускоренного поиска шумоподобного сигнала / Ш.Д. Ву, С.Ф. Горгадзе // Технологии информационного общества. Сборник трудов XVI Международной отраслевой научно-технической конференции – Москва, 2022. – С. 88-90.

21. Горгадзе, С.Ф. Ускоренный цифровой алгоритм синхронизациии шумоподобных сигналов по времени и частоте / С.Ф. Горгадзе // Системы синхронизации, формирования и обработки сигналов. – 2016. – Т. 7. № 4. – С. 16-18.

22. Ву, Ш.Д. Эффективность устройства грубой оценки параметров синхронизации шумоподобного сигнала / Ш.Д. Ву, С.Ф. Горгадзе // DPSA: Вопросы применения цифровой обработки сигналов. – 2023. – Т. 13. № 1. – С. 31-39.

23. Гут, Т.М. Характеристики ковариационных функций и оценка параметров шумоподобного сигнала / Т.М. Гут, С.Ф. Горгадзе // Телекоммуникации и информационные технологии. – 2019. – Т. 6. № 2. – С. 35-41.

24. Музыченко, Н.Ю. Поиск и обнаружение шумоподобных сигналов в условиях частотной нестабильности канала связи / Н.Ю. Музыченко // Радиотехника и электроника. – 2019. – Т. 64. № 1. – С. 44-49.

И.И. 25. Сныткин, Способ «третьей решающей схемы» повышения эффективности синхронизации поиска И сложных широкополосных шумоподобных / И.И. Т.И. Сныткин сигналов Сныткин, DOI: 10.18127/j15604128-202106-05. // Электромагнитные волны и электронные системы. – 2021. – Т. 26. № 6. – С. 44–56.

26. Горгадзе, С.Ф. Эффективность технологий IDMA и CDMA при малом коэффициенте расширения спектра / С.Ф. Горгадзе, А.В. Ермакова // DPSA: Вопросы применения цифровой обработки сигналов. – 2023. – Т.13. № 2. – С.22-29.

27. Be'ery Y. Optimal Soft Decision Block Decoders Based on Fast Hadamard Transform / Y. Be'ery, J. Snyders // IEEE Trans. – 1986. – V. T.32. № 3. – P.355-364.

28. Кузнецов В.С. Разработка системы синхронизации на основе сложных широкополосных сигналов / В.С. Кузнецов, А.С. Волков, А.В. Солодков, В.А. Дорошенко. // Т-Сотт: Телекоммуникации и транспорт.– 2020. – Т.14. №5. – С. 4-14.

29. Смольянинов, В.М. Дискретные мультипликативные групповые сигналы и их связь с групповыми кодами / В.М. Смольянинов // Радиотехника и Электроника. – 1985. – Т. 30. № 12. – С. 2391-2394.

30. Gold, R. Optimal binary sequences for spread spectrum multiplexing (Corresp.) / R.Gold. – DOI: 10.1109 / TIT.1967.1054048. // IEEE Trans. on Information Theory. 1967. – Vol.1 – T.13. № 4. – pp. 6-19.

31. Кузнецов, В.С. Генерация ансамблей кодов Голда для систем прямого расширения спектра / В.С. Кузнецов, И.В. Шевченко, А.С. Волков, А.В. Солодков // Труды МАИ. – 2017. – № 96. http://trudymai.ru/.

32. Кузнецов, В.С. Быстрое декодирование на основе пассивной согласованной фильтрации длинных псевдослучайных кодов / В.С. Кузнецов, К.А. Мордасов // Известия высших учебных заведений. – Электроника. – 2010. – №1 (81). – С.57-62.

33. Михайлов, В.Ю. Применение преобразований в полях Галуа для быстрого поиска по задержке последовательностей Голда / В.Ю. Михайлов, Р.Б. Мазепа // Т-Сотт: Телекоммуникации и транспорт. – 2018. – Т. 12. № 4. – С. 4-9.

34. Mikhaylov, V. Y. Estimation of the Features of Application of the M-Sequences Subset with the Possibility of Joint Processing / V. Y. Mikhaylov, R. B. Mazepa. – DOI: 10.1109/SYNCHROINFO 51390.2021.9488414. // 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO). – 2021. – PP. 1-6.

 Питерсон, У. Коды, исправляющие ошибки. / У. Питерсон, Э. Уэлдон. – М.: Мир, 1976. – 593 с.

36. Свердлик, М.Б. Оптимальные дискретные сигналы. / М.Б. Свердлик – М.: Сов. Радио, 1975. – 200 с.

37. Канатова, Л.В. Быстрое корреляционное декодирование *ρ*-ичных кодов максимальной длины / Л.В. Канатова, В.Л. Литвинов, Л.М. Финк // Проблемы передачи информации. – Т.22. – Вып.2. 1986. – С. 98-103.

38. Свидетельство о государственной регистрации программы для ЭВМ № 2024618362 Российская Федерация. Программа вычисления и исследования статистических характеристик двумерных автокорреляционных шумоподобных сигналов / С.Ф. Горгадзе, Ш.Д. Ву, А.В. Ермакова; заявитель и правообладатель МТУСИ. – № 2024617404; заявл. 10.04.2024; опубл. 10.04.2024. – 1 с.

39. Свидетельство о государственной регистрации программы для ЭВМ № 2024663135 Российская Федерация. Программа построения матриц-циркулянтов М-последовательности и кода Голда на основе мультипликативных групп расширенных полей Галуа / С.Ф. Горгадзе, Ш.Д. Ву; заявитель и правообладатель МТУСИ. – № 2024661989 ; заявл. 28.05.2024; опубл. 04.06.2024. – 1 с.

40. S. D. Vu, A. V. Ermakova and S. F. Gorgadze, "Fast Spectral Transformations in the Truncated Walsh-Hadamard Basic and Synchronization of M-like Sequences," 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Vyborg, Russian Federation, 2024, pp. 1-6, doi: 10.1109/SYNCHROINFO61835.2024.10617540.

41. Ву, Ш.Д. Быстрые спектральные преобразования в усеченном базисе Уолша-Адамара и синхронизация м-подобных последовательностей / Ш.Д. Ву, А.В. Ермакова А.В, С.Ф. Горгадзе // Системы синхронизации, формирования и обработки сигналов, 2024. – Т. 15. № 9. – С. 32-39.

42. Ву, Ш.Д. Вероятностные характеристики ускоренного поиска шумоподобных сигналов / Ш.Д. Ву, С.Ф. Горгадзе // Телекоммуникации и информационные технологии, 2022. – Т. 9 № 2. – С. 120-127.

43. Roddy, D. Satellite Communications. / D. Roddy – McGraw-Hill Telecommunications, 2001. – 631p.

44. Морган, Д. Устройства обработки сигналов на ПАВ. / Д. Морган – М.: Радио и связь, 1990. – 416 с.

45. Горгадзе, С.Ф. Сложные композитные сигналы с равномерной амплитудной огибающей для спутниковых радионавигационных систем / С.Ф. Горгадзе // Радиотехника и электроника. – 2017. – Т. 62. № 4. – С. 317- 331.

46. Богословский, С. В. Оптимизация измерительных преобразователей на основе согласованной фильтрации и технологии поверхностных акустических волн / С. В. Богословский. // Научное приборостроение. – 2010. – Т. 20. № 3. – С. 31-34.

47. Gorgadze, S.F. Accelerated evaluation of spread spectrum signals synchronization parameters / S.F. Gorgadze, T.M. Gut. // В сборнике 2020 Systems of Signals Generating and Processing in the Field of on Board Communications, 2020. – C. 9078627.

48. Трахтман, А.М. Основы теории дискретных сигналов на конечных интервалах. / А.М. Трахтман, В.А. Трахтман. – М.: Сов. радио, 1975. – 205 с.

49. Горгадзе, С.Ф. Асимметричные модификации обобщенного быстрого преобразования Фурье и Фурье-Адамара / С.Ф. Горгадзе. // Радиотехника и электроника. 2005. – Т 50. №3. – С.302-308.

50. Be'ery, Y. A recursive Hadamard transform optimal soft decoding algorithm./ Y. Be'ery, J. Snyders // Journal algebraic discrete methods. 1987. – Vol.8. – №4. – P.778-789.

51. Смольянинов, В.М. Особенности спектрального анализа при распознавании дискретных сигналов, основанных на двоичных кодах. / В.М. Смольянинов, Л.Е. Назаров. // Радиотехника и электроника. –1988. – Т.32. №11. – С.2341-2347.

52. Смольянинов, В.М. Оптимизация алгоритма спектрального спектрального анализа при распознавании дискретных мультипликативных сигналов. / В.М. Смольянинов, Л.Е. Назаров. // Радиотехника и электроника. – 1989. – Т.35.№12. – С.2651-2653.

53. Смирнов, Н.И. Ускоренное обнаружение сверхдлинных псевдослучайных последовательностей в спутниковых системах персональной радиосвязи с синхронным кодовым разделением каналов / Н.И. Смирнов, С.Ф. Горгадзе. // Электросвязь. – 1998. – №5. – С. 14-18.

54. Смирнов, Н.И. Ускоренное обнаружение сверхдлинных синхросигналов и идентификация абонентских станций в спутниковых системах персональной радиосвязи с синхронным кодовым разделением / Н.И. Смирнов, С.Ф. Горгадзе. // Радиотехника и электроника. – 1998. – №12. – С. 1495-1504.

55. Смирнов, Н.И. Методы первичной синхронизации в мобильных и спутниковых системах связи третьего поколения с МДКР / Н.И. Смирнов, С.Ф. Горгадзе. // Электросвязь. – 2001. – №6. – С. 37-39.

56. Горгадзе, С.Ф. Обнаружение-различение адресных сложных сигналов при многостанционном доступе с кодовым разделением с использованием быстрых спектральных преобразований / С.Ф. Горгадзе. // Радиотехника и электроника. – 2006. – №4. – С. 428-436.

57. Смирнов, Н.И. Сравнение реализаций вариантов микроэлектронного блока обнаружения сложных сигналов / Н.И. Смирнов, Ю.А. Караваев. // Радиоэлектроника. – 1982. – №7. – С. 22-27.

58. Горгадзе, С.Ф. Измерительные сигналы с многопозиционными поднесущими для спутниковых радионавигационных систем / С.Ф. Горгадзе, В.В. Бойков. // Радиотехника и электроника. – 2014. – Т. 59. № 3. – С. 264.

59. Тихонов, В.И. Оптимальный прием сигналов./ В.И. Тихонов. – М.: Радио и связь. – 1983.– 320 с.

60. Лезин, Ю.С. Оптимальные фильтры и накопители импульсных сигналов. /

Ю.С. Лезин. – М.: Советское радио, 1963. – 320 с.

61. Зеленка, И. Пьезоэлектрические резонаторы на объемных и поверхностных акустических волнах./ И. Зеленка. – М.: Мир, 1990. – 584 с.

62. Мэтьюз, М. Фильтры на поверхностных акустических волнах./ М. Мэтьюз.
– М.: Радио и связь, 1981.– 472 с.

63. Спилкер, Дж. Цифровая спутниковая связь./ Дж. Спилкер. – М.: Радио и связь, 1979. – 592с.

64. Журавлев, В.И. Поиск и синхронизация ШПС./ В.И. Журавлев. – М.: Радио и связь, 1986. – 240с.
65. Пестряков, В.Б. Шумоподобные сигналы в системах передачи информации.
/ В.Б. Пестряков, В.П. Афанасьев, В.Н. Гурвиц ; Под ред. В.Б.Пестрякова. – М.: Сов. Радио, 1973. – 424 с.

66. Смирнов, Н.И. Проектирование микроэлектронных устройств обработки шумоподобных сигналов: учебное пособие. Ч.2 / Н.И. Смирнов, С.Ф. Горгадзе. – М.: МЭИС, 1988. – 69 с.

67. Guangyu, T. Research and Implementation of the Early-late Gate Bit Synchronization Algorithm in the Noncoherent Spread Spectrum System / T. Guangyu., C. Wenbing., Z. Hancheng et al. – DOI: 10.1109/ISNCC55209.2022.9851724. // 2022 International Symposium on Networks, Computers and Communications (ISNCC).

68. Смирнов, Н.И. Сравнение характеристик спектров шумоподобных сигналов различных типов / Н.И. Смирнов, С.Ф. Горгадзе // Радиотехника. – 1990. – №6. – С. 6.

69. Смирнов, Н.И. Энергетические спектры шумоподобных сигналов различных типов / Н.И. Смирнов, С.Ф. Горгадзе // Радиотехника и электроника. – 1990. – Т. 35, №3. – С. 556.

70. Яковлева, Т.В. Условия применимости статистической модели Райса и расчет параметров райсовского сигнала методом максимума правдоподобия / Т.В. Яковлева // Компьютерные исследования и моделирование. – 2014. – Т. 6, № 1. – С. 13-25.

71. Тихонов В.И. Статистическая радиотехника./ В.И. Тихонов. – М.: Советское радио, 1966. –219 с.

72. Дворкович В.П. Оконные функции для гармонического анализа сигналов./ В.П. Дворкович, А.В. Дворкович. – М.: Техносфера, 2014. – 105с. Программный код алгоритма построения матрицы циркулянта МП и кодов Голда на основе мультипликативных групп расширенных полей Галуа на языке Матлаб

```
classdef app_MS < matlab.apps.AppBase
  % Properties that correspond to app components
  properties (Access = public)
    UIFigure matlab.ui.Figure
    Panel
              matlab.ui.container.Panel
    TextArea matlab.ui.control.TextArea
    Reset
              matlab.ui.control.Button
    ButtonGroup matlab.ui.container.ButtonGroup
    H1Button matlab.ui.control.RadioButton
                matlab.ui.control.RadioButton
    H2Button
    H3Button matlab.ui.control.RadioButton
    H4Button
                matlab.ui.control.RadioButton
    alphaLabel matlab.ui.control.Label
    Gold
              matlab.ui.control.Button
    MP
              matlab.ui.control.Button
    EditField matlab.ui.control.NumericEditField
    a2EditField matlab.ui.control.NumericEditField
    a2Label
               matlab.ui.control.Label
    alEditField matlab.ui.control.NumericEditField
    alLabel matlab.ui.control.Label
    UIAxes3 matlab.ui.control.UIAxes
    UIAxes2
                matlab.ui.control.UIAxes
    UIAxes1
                matlab.ui.control.UIAxes
  end
  methods (Access = private)
    % Функция построения МЦ на основе МП
      function [MS,MP_symbols,number_shift_MS,alpha_x] =
function_generate_MS(app,h,alpha_0)
         % MS - матрица циркулянт
         % МР - М-последовательность
         % MS = zeros(row MS,N);
         m = length(alpha_0);
         N = 2^m - 1;
         row_MS = (floor(N/m)+1)*m;
         arr_shift_block = zeros(1,floor(N/m));
         for i = 1:floor(N/m)
           arr_shift_block(i) = i*m - 1;
         end
         number_shift_MS = zeros(row_MS,1);
         % исходная матрица Х
```

```
[x,alpha_x,MP_symbols] = app.function_generate_MP_X(h,alpha_0);
         % сору X в MS
         for i = 1:m
           for j = 1:N
             MS(i,j) = x(i,j);
           end
         end
         % Номер сдвига строки МП Х от первого МП
         number_shift_X = app.function_find_number_shift(x,MP_symbols,alpha_0);
         id_number_shift_MS = 1;
            % Copy number_shift_X vào number_shift_
         for id number shift X = 1:m
           number shift MS(id number shift MS,1) =
number_shift_X(id_number_shift_X);
           id_number_shift_MS = id_number_shift_MS + 1;
         end
         for i = 1:length(arr shift block)
           h result = app.function generating matrix(h,arr shift block(i),alpha_0);
           block_x = app.function_generate_block_x(h_result,x,alpha_0);
           alpha_block_x = app.function_caculation_alpha_block(block_x,alpha_0);
           number_shift_block_x =
app.function_find_number_shift(block_x,MP_symbols,alpha_0);
           block_x_row = 1;
           for id_MS_row = (arr_shift_block(i) + 2) : (arr_shift_block(i) + 6)
              block_x_column = 1;
             for id_MS_column = 1 : N
                MS(id_MS_row,id_MS_column) =
block x(block x row,block x column);
                block_x_column = block_x_column + 1;
              end
              block_x_row = block_x_row +1;
           end
           for id_number_shift_block_x = 1: m
             number shift MS(id number shift MS,1) =
number_shift_block_x(id_number_shift_block_x,1);
             id number shift MS = id number shift MS+1;
           end
         end
       end
       % Функция построения исходного блока Х
       function [X,alpha,MP_symbols] = function_generate_MP_X(app,h,alpha_0)
         % h - сопровождаюцая матрица
         % alpha_0 - начальный блок
         m = length(alpha_0);
         N = 2^m - 1;
```

```
row_MP = m;
column_MP = N;
alpha_temp = zeros(m,1);
for id_a = 1:m
  alpha_temp(id_a,1) = alpha_0(id_a);
end
format compact;
% Расчет Код МР
   % Х - блок Х
for i = 1: row MP
    X(i,1) = alpha_0(i);
end
for index_column_MP = 2: column_MP
 for i = 1: row_MP
    temp = 0;
    for j = 1: row_MP
     result_and = h(i,j)& alpha_temp(j,1);
     temp = bitxor(temp,result_and);
    end
    X(i,index_column_MP) = temp;
 end
 for i = 1: row_MP
    alpha_temp(i,1) = X(i,index_column_MP);
 end
end
% Расчет значения альфа в 10-чной системе
alpha = zeros(1,column_MP);
for i = 1: column_MP
  sum = 0;
  for j = 1: row_MP
    sum = sum + X(j,i).*2.^{(row_MP-j)};
  end
  alpha(1,i) = sum;
end
% Определения номера сдвига МП
% вектор символов МП
MP_symbols = zeros(1,N);
for j = 1:N
  sum_shift = 0;
  for id = 0 : (m-1)
   temp = j + id;
   if (temp <= N)
     sum_shift = X(1,temp).*2^{(m-1-id)}+sum_shift;
   else
     temp = temp - N;
```

```
sum_shift = X(1,temp)*2^{(m-1-id)}+sum_shift;
             end
            end
           MP_symbols(1,j) = sum_shift;
         end
       end
       % Функция поиска номера сдвига
       function number_shift = function_find_number_shift(app,block_x,
MP_symbols,alpha_0)
         m = length(alpha_0);
         N = 2^m - 1;
         % Определение значения НБ (начального блока)
         sum0 block x = zeros(m, 1);
         for i = 1:m
           sum0_block_x(i,1) = 0;
           for i = 1:m
              sum0 block x(i,1) = block x(i,j)*2^{(m-j)} + sum0 block x(i,1);
           end
         end
         % Определение номера сдвига МП путем сравнения слова ПСП
         for i = 1:m
           for j = 1:N
              if (sum0_block_x(i,1) == MP_symbols(j))
                number_shift(i,1) = j-1;
                break;
              end
           end
         end
       end
       % Функция генерирования сопровождающих матриц Н
       function h result =
function_generating_matrix(app,h,arr_shift_block_value,alpha_0)
         m = length(alpha_0);
         N = 2^{m} - 1;
         for i = 1:m
           for i = 1:m
             h_{result}(i,j) = h(i,j);
           end
         end
         for id_m = 1:arr_shift_block_value
            for i = 1:m
             for j = 1:m
                temp = 0;
                for z = 1:m
```

```
a = h_{result(i,z)} \& h(z,j);
          temp = bitxor(temp,a);
         end
         h_{temp}(i,j) = temp;
      end
     end
    for i = 1:m
       for j = 1:m
         h_{result}(i,j) = h_{temp}(i,j);
       end
    end
  end
end
% Функция генерирования блоков Х, соответствующих Н
function block x = function generate block x(app,h,x,alpha_0)
  m = length(alpha_0);
  N = 2^m - 1;
  for i = 1:m
      for j = 1:N
         temp = 0;
         for z = 1:m
          a = h(i,z) \& x(z,j);
          temp = bitxor(temp,a);
         end
         block_x(i,j) = temp;
      end
  end
end
% Функция вычисления значения alpha блока X в 10-чной системе
function alpha 10 = function caculation alpha block(app,X,alpha 0)
  row_MP = length(alpha_0);
  column_MP = 2^row_MP - 1;
  for i = 1: column_MP
    sum = 0;
    for j = 1: row_MP
       sum = sum + X(j,i).*2.^{(row_MP-j)};
    end
    alpha_10(i) = sum;
  end
end
% Функция перемена МЦ на (-1,1)
function MS_alphabet_11 = function_MS_alphabet_11(app,MS)
  for i = 1: size(MS,1)
    for j = 1: size(MS,2)
       if(MS(i,j) == 0)
```

```
MS_alphabet_11(i,j) = 1;
             elseif (MS(i,j) == 1)
                MS_alphabet_11(i,j) = -1;
             end
           end
         end
       end
       % Функция генерирования ПСП Голда путем сложения 2-ух МП и его
      function [MS_Gold,alpha_MS_Gold_MS_Gold_symbols] =
function_generate_MS_Gold (app,MS1,MS2,alpha_0)
         m = length(alpha_0);
         N = 2^m - 1;
         row MS = (floor(N/m)+1)*m;
         % Определение MS
         MS Gold = bitxor(MS1,MS2);
         alpha_MS_Gold = app.function_caculation_alpha_block(MS_Gold,alpha_0);
         MS Gold symbols = zeros(1,N);
           for j = 1:N
             sum_shift = 0;
             for id = 0 : (m-1)
              temp = j + id;
              if (temp \leq N)
                 sum_shift = MS_Gold(1,temp).*2^(m-1-id)+sum_shift;
              else
                 temp = temp - N;
                 sum_shift = MS_Gold(1,temp)*2^(m-1-id)+sum_shift;
              end
             end
             MS_Gold_symbols(1,j) = sum_shift;
           end
      end
       % Функция построения ПАКФ
      function PAFK = function_PAFK (app,MS_alphabet_11,alpha_0)
         m = length(alpha 0);
         N = 2^m - 1;
         % Вычисления ПАКФ
         MS_column_transposed = zeros(size(MS_alphabet_11,2),1);
         for i = 1:size(MS_alphabet_11,2)
           MS column transposed(i,1) = MS alphabet 11(1,i);
         end
         for i = 1:size(MS_alphabet_11,1)
           sum = 0;
           for j = 1 :size(MS_alphabet_11,2)
             sum = sum + MS_alphabet_11(i,j)*MS_column_transposed(j,1);
           end
```

```
PAFK(i,1) = 1/N*sum;
         end
      end
      function_graphic_MS_Gold(app,MS_Gold,alpha_0)
         m = length(alpha_0);
         N = 2^m - 1;
         x_{lim} = fix(((floor(N/m)+1)*m)/2);
         MS_Gold_alphabet_11 = app.function_MS_alphabet_11 (MS_Gold);
         PAFK_MS_Gold = app.function_PAFK(MS_Gold_alphabet_11,alpha_0);
         % график
         cla(app.UIAxes3,'reset');
         grid(app.UIAxes3,"on");
         title(app.UIAxes3, {"ПАКФ ПСП Голда при it{N} = ",N}, FontWeight =
"bold",FontSize=14);
         xlabel(app.UIAxes3,'\it{\tau}',FontWeight = "bold",FontSize=14);
         ylabel(app.UIAxes3,"\it{\chi (\tau,0)}",FontWeight="bold",FontSize=14);
         hold(app.UIAxes3, 'on');
         app.UIAxes3.XLim = [-x_lim x_lim];
         x1 = 0:1:x_{lim};
         y_1 = PAFK_MS_Gold(x_{1+1});
         plot(app.UIAxes3,x1,y1,'Color','b');
         x^{2} = -x_{lim:1:0};
         y_2 = (PAFK_MS_Gold(-(x_2-1)));
         plot(app.UIAxes3,x2,y2,'Color','b');
         app.UIAxes3 .YLim = [(min(PAFK_MS_Gold)-0.2)
max(PAFK_MS_Gold)+0.2];
      end
      % Функция построения ПВКФ
      function PVFK = function_PVFK(app,MS_alphabet_11,column_PVFK)
         % MS_alphabet_11 - матрица-циркулянт в альфавите 1 -1
         % column_PVFK - транспонированная строка на столбец
         for i = 1:35
           sum = 0:
          for i = 1:31
             sum = sum + MS_alphabet_11(i,j)*column_PVFK(j,1);
          end
          PVFK(i,1) = sum;
         end
      end
      % Функция построения ПАКФ МП
      function
[MS1_hx1,MP_symbols1_hx1,number_shift_MS1_hx1,alpha_hx1,MS2_hx2,MP_symb
ols2_hx2,number_shift_MS2_hx2,alpha_hx2] = function_PAFK_MP (app,hx1,hx2,
```

```
alpha_0)
```

[MS1_hx1,MP_symbols1_hx1,number_shift_MS1_hx1,alpha_hx1] = app.function_generate_MS(hx1,alpha_0);

[MS2_hx2,MP_symbols2_hx2,number_shift_MS2_hx2,alpha_hx2] = app.function_generate_MS(hx2,alpha_0);

% MS в альфавите 1 -1

MS1_alphabet_11 = app.function_MS_alphabet_11(MS1_hx1); MS2_alphabet_11 = app.function_MS_alphabet_11(MS2_hx2); % Построение ПАКФ МП1 и МП2 PAFK_MS1 = app.function_PAFK(MS1_alphabet_11,alpha_0); PAFK_MS2 = app.function_PAFK(MS2_alphabet_11,alpha_0); % График ПАКФ МП1 $m = length(alpha_0);$ $N = 2^m - 1;$ $x_{lim} = fix(((floor(N/m)+1)*m)/2);$ cla(app.UIAxes1,'reset'); grid(app.UIAxes1,"on"); title(app.UIAxes1, {"ПАКФ ПСП1 при \it{N} =",N}, FontWeight = "bold",FontSize=14); xlabel(app.UIAxes1,'\it{\tau}',FontWeight = "bold",FontSize=14); ylabel(app.UIAxes1,"\it{\chi (\tau,0)}",FontWeight="bold",FontSize=14); hold(app.UIAxes1, 'on'); app.UIAxes1.XLim = [-x_lim x_lim]; $x1 = 0:1:x_{lim};$ $y_1 = PAFK_MS_1(x_1+1);$ plot(app.UIAxes1,x1,y1,'Color','b'); $x^2 = -x \lim_{x \to 0} 1:0;$ $y_2 = (PAFK_MS1(-(x_2-1)));$ plot(app.UIAxes1,x2,y2,'Color','b'); app.UIAxes1.YLim = [(min(PAFK_MS1)-0.01) max(PAFK_MS1)]; % График ПАКФ МП2 cla(app.UIAxes2,'reset'); grid(app.UIAxes2,"on"); title(app.UIAxes2,{"ПАКФ ПСП2 при $it{N} = ",N$ },FontWeight = "bold",FontSize=14); xlabel(app.UIAxes2,'\it{\tau}',FontWeight = "bold",FontSize=14); ylabel(app.UIAxes2,"\it{\chi (\tau,0)}",FontWeight="bold",FontSize=14); hold(app.UIAxes2, 'on'); app.UIAxes2.XLim = [-x_lim x_lim]; $x1 = 0:1:x_lim;$ $y_1 = PAFK_MS2(x_{1+1});$ plot(app.UIAxes2,x1,y1,'Color','b'); $x2 = -x_{lim:1:0;}$ $y_2 = (PAFK_MS2(-(x_2-1)));$ plot(app.UIAxes2,x2,y2,'Color','b');

app.UIAxes2 .YLim = [(min(PAFK_MS2)-0.01) max(PAFK_MS2)];

end

```
% Водить значения a1, a2 в Н
function [h11,h12,h21,h22,h31,h32,h41,h42] = input_H(app,a1,a2,alpha_0)
  m = length(alpha_0);
  h = eye(m-1); % матрица единицы
  % Чтения сопровождающих матриц
  a1_t = transpose(a1);
  a2_t = transpose(a2);
  a1_flipud = flipud(a1_t); % flipud vector-столбец a1 t
  a2_flipud = flipud(a2_t); % flipud vector-столбец a2 t
  al_fliplr = fliplr(a1); % fliplr vector-строк al
  a2_fliplr = fliplr(a2);
                           % fliplr vector-строк a2
  h_pre = padarray(h, [1,0], 0, 'pre');
  h_{post} = padarray(h, [1,0], 0, 'post');
  h_{left} = padarray(h, [0, 1], 0, 'pre');
  h_right = padarray(h, [0, 1], 0, 'post');
  h11 = [h_pre, a1_t];
  h12 = [h_pre, a2_t];
  h21 = [h_left;a1];
  h22 = [h_left;a2];
  h31 = [a1_flipud, h_post];
  h32 = [a2 flipud, h_post];
  h41 = [a1_fliplr;h_right];
  h42 = [a2_fliplr;h_right];
end
```

end

% Callbacks that handle component events methods (Access = private)

% Code that executes after component creation function startupFcn(app)

```
% Button pushed function: MP_
function MP_Pushed(app, event)
% Чтение входных данных
str_a1 = num2str(app.a1EditField.Value);
a1 = arrayfun(@str2double,str_a1);
str_a2 = num2str(app.a2EditField.Value);
a2 = arrayfun(@str2double,str_a2);
str_alpha = num2str(app.EditField.Value);
alpha0 = arrayfun(@str2double,str_alpha);
% Подготовка сопровождающих матриц
```

[h11,h12,h21,h22,h31,h32,h41,h42] = app.input_H(a1,a2,alpha0); if app.H1Button.Value == 1

```
[MS1_h11,MP_symbols1_h11,number_shift_MS1_h11,alpha_h11,MS2_h12,MP_symb
ols2 h12, number shift MS2 h12, alpha h12] = app.function PAFK MP (h11, h12,
alpha0);
         % Проверка присутствия файл матриц-циркулянтов MS1, MS2
         fileExists_MS1 = exist('MS1_h11.xlsx', 'file');
         % Если присутствуется, т.е его удалить
         if fileExists MS1 == 2
           delete('MS1_h11.xlsx');
         end
         writematrix(MS1 h11, 'MS1 h11.xlsx');
                                                   % Записать MS1 в
MS1_h11.xlsx
         winopen('MS1 h11.xlsx');
                                             % Открывать MS1 h11.xlsx
         % Проверка присутствия файл матриц-циркулянтов MS1, MS2
         fileExists MS2 = exist('MS2 h12.xlsx', 'file');
         % Если присутствуется, т.е его удалить
         if fileExists_MS2 == 2
           delete('MS2_h12.xlsx');
         end
         writematrix(MS2 h12, 'MS2 h12.xlsx');
                                                   % Записать MS2 в
MS2 h12.xlsx
         winopen('MS2 h12.xlsx');
                                             % Открывать MS2 h12.xlsx
      elseif app.H2Button.Value == 1
[MS1_h21,MP_symbols1_h21,number_shift_MS1_h21,alpha_h21,MS2_h22,MP_symb
ols2 h22, number shift MS2 h22, alpha h22] = app.function PAFK MP (h21, h22,
alpha0);
         % Проверка присутствия файл матриц-циркулянтов MS1, MS2
         fileExists_MS1 = exist('MS1_h21.xlsx', 'file');
         % Если присутствуется, т.е его удалить
         if fileExists_MS1 == 2
           delete('MS1 h21.xlsx');
         end
         writematrix(MS1 h21, 'MS1 h21.xlsx');
                                                   % Записать MS1 в
MS1_h21.xlsx
         winopen('MS1_h21.xlsx');
                                             % Открывать MS1 h21.xlsx
         % Проверка присутствия файл матриц-циркулянтов MS1, MS2
         fileExists_MS2 = exist('MS2_h22.xlsx', 'file');
         % Если присутствуется, т.е его удалить
         if fileExists_MS2 == 2
           delete('MS2_h22.xlsx');
         end
```

writematrix(MS2_h22, 'MS2_h22.xlsx'); % Записать MS2 в MS2_h22.xlsx winopen('MS2_h22.xlsx'); % Открывать MS2_h22.xlsx elseif app.H3Button.Value == 1 [MS1_h31,MP_symbols1_h31,number_shift_MS1_h31,alpha_h31,MS2_h32,MP_symb ols2 h32, number shift MS2 h32, alpha h32] = app.function PAFK MP (h31, h32, alpha0); % Проверка присутствия файл матриц-циркулянтов MS1, MS2 fileExists_MS1 = exist('MS1_h31.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists_MS1 == 2delete('MS1 h31.xlsx'); end writematrix(MS1_h31, 'MS1_h31.xlsx'); % Записать MS1 в MS1_h31.xlsx winopen('MS1 h31.xlsx'); % Открывать MS1 h31.xlsx % Проверка присутствия файл матриц-циркулянтов MS1, MS2 fileExists_MS2 = exist('MS2_h32.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists_MS2 == 2delete('MS2_h32.xlsx'); end writematrix(MS2_h32, 'MS2_h32.xlsx'); % Записать MS2 в MS2_h32.xlsx winopen('MS2_h32.xlsx'); % Открывать MS2_h32.xlsx elseif app.H4Button.Value == 1 [MS1_h41,MP_symbols1_h41,number_shift_MS1_h41,alpha_h41,MS2_h42,MP_symb ols2_h42,number_shift_MS2_h42,alpha_h42] = app.function_PAFK_MP (h41,h42, alpha0); % Проверка присутствия файл матриц-циркулянтов MS1, MS2 fileExists_MS1 = exist('MS1_h41.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists_MS1 == 2delete('MS1 h41.xlsx'); end writematrix(MS1_h41, 'MS1_h41.xlsx'); % Записать MS1 в MS1_h41.xlsx winopen('MS1_h41.xlsx'); % Открывать MS1_h41.xlsx % Проверка присутствия файл матриц-циркулянтов MS1, MS2 fileExists_MS2 = exist('MS2_h42.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists_MS2 == 2 delete('MS2_h42.xlsx');

```
end
         writematrix(MS2_h42, 'MS2_h42.xlsx');
                                                     % Записать MS2 в
MS2 h42.xlsx
         winopen('MS2_h42.xlsx');
                                               % Открывать MS2_h42.xlsx
      end
    end
    % Button pushed function: Reset_
    function Reset_Pushed(app, event)
       cla(app.UIAxes1,'reset');
       grid(app.UIAxes1,"on");
      title(app.UIAxes1,"ПАКФ ПСП1 при N",FontWeight = "bold",FontSize=14);
      xlabel(app.UIAxes1,'\it{\tau}',FontWeight = "bold",FontSize=14);
      ylabel(app.UIAxes1,"\it{\chi (\tau,f)}",FontWeight="bold",FontSize=14);
      hold(app.UIAxes1, 'on'):
      cla(app.UIAxes2,'reset');
       grid(app.UIAxes2,"on");
      title(app.UIAxes2,"ПАКФ ПСП2 при N",FontWeight = "bold",FontSize=14);
       xlabel(app.UIAxes2,'\it{\tau}',FontWeight = "bold",FontSize=14);
      ylabel(app.UIAxes2,"\it{\chi (\tau,f)}",FontWeight="bold",FontSize=14);
      hold(app.UIAxes3, 'on');
      cla(app.UIAxes3,'reset');
      grid(app.UIAxes3,"on");
      title(app.UIAxes3,"ПАКФ ПСП Голда при N",FontWeight =
"bold",FontSize=14);
      xlabel(app.UIAxes3,'\it{\tau}',FontWeight = "bold",FontSize=14);
      ylabel(app.UIAxes3,"\it{\chi (\tau,f)}",FontWeight="bold",FontSize=14);
      hold(app.UIAxes3, 'on');
    end
    % Button pushed function: Gold
    function Gold ButtonPushed(app, event)
       str_alpha = num2str(app.EditField.Value);
       alpha0 = arrayfun(@str2double.str alpha);
      if app.H1Button.Value == 1
         MS1 h11 = readmatrix('MS1 h11.xlsx');
         MS2_h11 = readmatrix('MS2_h12.xlsx');
         [MS_Gold_h1,alpha_MS_Gold_h1,MS_Gold_symbols_h1] =
app.function generate MS Gold (MS1_h11,MS2_h11,alpha0);
         % Проверка присутствия файл матриц-циркулянтов MS Gold
         fileExists MS_Gold = exist('MS_Gold_h1.xlsx', 'file');
         % Если присутствуется, т.е его удалить
         if fileExists_MS_Gold == 2
           delete('MS Gold h1.xlsx');
         end
```

writematrix(MS_Gold_h1, 'MS_Gold_h1.xlsx'); % Записать MS_Gold_h1 B MS_Gold_h1.xlsx winopen('MS_Gold_h1.xlsx'); % Открывать MS_Gold_h1.xlsx app.function_graphic_MS_Gold(MS_Gold_h1,alpha0); elseif app.H2Button.Value == 1 MS1_h21 = readmatrix('MS1_h21.xlsx'); MS2_h22 = readmatrix('MS2_h22.xlsx'); [MS_Gold_h2,alpha_MS_Gold_h2,MS_Gold_symbols_h2] = app.function_generate_MS_Gold (MS1_h21,MS2_h22,alpha0); % Проверка присутствия файл матриц-циркулянтов MS Gold fileExists MS_Gold = exist('MS_Gold_h2.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists MS Gold == 2delete('MS Gold h2.xlsx'); end writematrix(MS_Gold_h2, 'MS_Gold_h2.xlsx'); % Записать MS Gold h1 B MS Gold h1.xlsx winopen('MS_Gold_h2.xlsx'); % Открывать MS_Gold_h1.xlsx app.function_graphic_MS_Gold(MS_Gold_h2,alpha0); elseif app.H3Button.Value == 1 MS1_h31 = readmatrix('MS1_h31.xlsx'); MS2_h31 = readmatrix('MS2_h32.xlsx'); [MS_Gold_h3,alpha_MS_Gold_h3,MS_Gold_symbols_h3] = app.function_generate_MS_Gold (MS1_h31,MS2_h31,alpha0); % Проверка присутствия файл матриц-циркулянтов MS Gold fileExists MS Gold = exist('MS Gold h3.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists MS Gold == 2delete('MS_Gold_h3.xlsx'); end writematrix(MS_Gold_h3, 'MS_Gold_h3.xlsx'); % Записать MS_Gold_h1 B MS_Gold_h1.xlsx winopen('MS_Gold_h3.xlsx'); % Открывать MS_Gold_h1.xlsx app.function graphic MS_Gold(MS_Gold_h3,alpha0); elseif app.H4Button.Value == 1 MS1 h41 = readmatrix('MS1 h41.xlsx'); MS2_h41 = readmatrix('MS2_h42.xlsx'); [MS_Gold_h4,alpha_MS_Gold_h4,MS_Gold_symbols_h4] = app.function_generate_MS_Gold (MS1_h41,MS2_h41,alpha0); % Проверка присутствия файл матриц-циркулянтов MS Gold fileExists MS_Gold = exist('MS_Gold_h4.xlsx', 'file'); % Если присутствуется, т.е его удалить if fileExists MS Gold == 2delete('MS_Gold_h4.xlsx'); end

```
writematrix(MS_Gold_h4, 'MS_Gold_h4.xlsx');
                                                            % Записать
MS_Gold_h1 B MS_Gold_h1.xlsx
         winopen('MS_Gold_h4.xlsx');
                                                  % Открывать MS_Gold_h1.xlsx
         app.function_graphic_MS_Gold(MS_Gold_h4,alpha0);
      end
    end
  end
  % Component initialization
  methods (Access = private)
    % Create UIFigure and components
    function createComponents(app)
       % Create UIFigure and hide until all components are created
      app.UIFigure = uifigure('Visible', 'off');
       app.UIFigure.Position = [100 100 919 660];
       app.UIFigure.Name = 'MATLAB App';
       % Create Panel
       app.Panel = uipanel(app.UIFigure);
       app.Panel.TitlePosition = 'centertop';
      app.Panel.Title = 'Программа построения матриц-циркулянта МП и кода
Голда на основе мультипликативных групп расширенных полей Галуа';
       app.Panel.BackgroundColor = [1 1 1];
       app.Panel.FontWeight = 'bold';
       app.Panel.FontSize = 14;
       app.Panel.Position = [1 1 919 660];
       % Create UIAxes1
       app.UIAxes1 = uiaxes(app.Panel);
      title(app.UIAxes1, 'ΠΑΚΦ ΜΠ1')
      xlabel(app.UIAxes1, 'X')
       ylabel(app.UIAxes1, 'Y')
       zlabel(app.UIAxes1, 'Z')
      app.UIAxes1.FontName = 'Times New Roman';
       app.UIAxes1.XGrid = 'on';
       app.UIAxes1.YGrid = 'on';
       app.UIAxes1.Position = [502 331 384 271];
       % Create UIAxes2
       app.UIAxes2 = uiaxes(app.Panel);
      title(app.UIAxes2, 'ΠΑΚΦ ΜΠ2')
       xlabel(app.UIAxes2, 'X')
       ylabel(app.UIAxes2, 'Y')
```

zlabel(app.UIAxes2, 'Z')
app.UIAxes2.FontName = 'Times New Roman';
app.UIAxes2.XGrid = 'on';
app.UIAxes2.YGrid = 'on';
app.UIAxes2.ZGrid = 'on';
app.UIAxes2.Position = [503 65 384 250];

% Create UIAxes3 app.UIAxes3 = uiaxes(app.Panel); title(app.UIAxes3, 'ПАКФ кода Голда') xlabel(app.UIAxes3, 'X') ylabel(app.UIAxes3, 'Y') zlabel(app.UIAxes3, 'Z') app.UIAxes3.FontName = 'Times New Roman'; app.UIAxes3.XGrid = 'on'; app.UIAxes3.YGrid = 'on'; app.UIAxes3.Position = [46 65 391 250];

% Create a1Label app.a1Label = uilabel(app.Panel); app.a1Label.HorizontalAlignment = 'center'; app.a1Label.FontSize = 14; app.a1Label.FontWeight = 'bold'; app.a1Label.Position = [43 580 211 22]; app.a1Label.Text = 'Примитивный полином: a1 =';

% Create a1EditField app.a1EditField = uieditfield(app.Panel, 'numeric'); app.a1EditField.ValueDisplayFormat = '%d'; app.a1EditField.FontSize = 14; app.a1EditField.Position = [261 582 176 22];

% Create a2Label app.a2Label = uilabel(app.Panel); app.a2Label.HorizontalAlignment = 'center'; app.a2Label.FontSize = 14; app.a2Label.FontWeight = 'bold'; app.a2Label.Position = [42 550 211 22]; app.a2Label.Text = 'Примитивный полином: a2 =';

% Create a2EditField app.a2EditField = uieditfield(app.Panel, 'numeric'); app.a2EditField.ValueDisplayFormat = '%d'; app.a2EditField.FontSize = 14; app.a2EditField.Position = [262 550 176 22];

% Create EditField app.EditField = uieditfield(app.Panel, 'numeric'); app.EditField.ValueDisplayFormat = '%d'; app.EditField.FontSize = 14;app.EditField.Position = [264 514 175 22]; % Create MP_ app.MP_ = uibutton(app.Panel, 'push'); app.MP_.ButtonPushedFcn = createCallbackFcn(app, @MP_Pushed, true); app.MP .FontSize = 14: app.MP_.FontWeight = 'bold'; app.MP_.Position = [105 437 100 26]; app.MP_.Text = 'M Π '; % Create Gold_ app.Gold = uibutton(app.Panel, 'push'); app.Gold_.ButtonPushedFcn = createCallbackFcn(app, @Gold_ButtonPushed, true); $app.Gold_.FontSize = 14;$ app.Gold_.FontWeight = 'bold'; app.Gold_.Position = [106 402 100 26]; app.Gold_.Text = 'Код Голда'; % Create alphaLabel app.alphaLabel = uilabel(app.Panel); app.alphaLabel.HorizontalAlignment = 'center'; app.alphaLabel.FontSize = 14;app.alphaLabel.FontWeight = 'bold'; app.alphaLabel.Position = [102 514 155 22];app.alphaLabel.Text = 'Начальный блок: $\alpha = ';$ % Create ButtonGroup app.ButtonGroup = uibuttongroup(app.Panel); app.ButtonGroup.TitlePosition = 'centertop'; app.ButtonGroup.Title = 'Сопровождающая матрица'; app.ButtonGroup.BackgroundColor = [1 1 1]; app.ButtonGroup.FontWeight = 'bold'; app.ButtonGroup.Position = [258 342 180 149]; % Create H4Button app.H4Button = uiradiobutton(app.ButtonGroup); app.H4Button.Text = 'H4';

app.H4Button.Position = [11 15 65 22];

% Create H3Button app.H3Button = uiradiobutton(app.ButtonGroup); app.H3Button.Text = 'H3'; app.H3Button.Position = [11 46 65 22];

% Create H2Button app.H2Button = uiradiobutton(app.ButtonGroup); app.H2Button.Text = 'H2'; app.H2Button.Position = [11 73 65 22];

% Create H1Button app.H1Button = uiradiobutton(app.ButtonGroup); app.H1Button.Text = 'H1'; app.H1Button.Position = [11 100 58 22]; app.H1Button.Value = true;

% Create Reset_ app.Reset_ = uibutton(app.Panel, 'push'); app.Reset_.ButtonPushedFcn = createCallbackFcn(app, @Reset_Pushed, true); app.Reset_.FontSize = 14; app.Reset_.FontWeight = 'bold'; app.Reset_.Position = [107 366 100 26]; app.Reset_.Text = 'C6poc';

```
% Create TextArea
app.TextArea = uitextarea(app.Panel);
app.TextArea.FontName = 'Times New Roman';
app.TextArea.FontWeight = 'bold';
app.TextArea.Position = [49 9 823 35];
app.TextArea.Value = {'*: Закрывайте MS1_h11,h21,h31,h41.xlsx и
MS2_h12,h22,h32,h42.xlsx или MS_Gold_h1,h2,h3,h4.xlsx перед нажать МП или
код Голда'; '*: МП - М-последовательность'};
```

```
% Show the figure after all components are created
app.UIFigure.Visible = 'on';
end
end
```

```
% App creation and deletion methods (Access = public)
```

```
% Construct app
function app = app_MS
```

% Create UIFigure and components

createComponents(app)

% Register the app with App Designer registerApp(app, app.UIFigure)

```
% Execute the startup function
runStartupFcn(app, @startupFcn)
```

```
if nargout == 0
clear app
end
end
```

% Code that executes before app deletion function delete(app)

```
% Delete UIFigure when app is deleted
delete(app.UIFigure)
end
end
```

Программный код разработанного программы для вычисления и исследования ДАКФ ПСП на языке Матлаб

classdef app1 < matlab.apps.AppBase % Properties that correspond to app components properties (Access = public) UIFigure matlab.ui.Figure Panel matlab.ui.container.Panel DropDown matlab.ui.control.DropDown Panel 2 matlab.ui.container.Panel DropDown_3 matlab.ui.control.DropDown Reset matlab.ui.control.Button DropDown 2 matlab.ui.control.DropDown PN_ matlab.ui.control.Button DAKF matlab.ui.control.Button f_cross_section_ matlab.ui.control.Button ACF matlab.ui.control.Button InputPanel matlab.ui.container.Panel tauLabel matlab.ui.control.Label zSpinner matlab.ui.control.Spinner Label 7 matlab.ui.control.Label Label_6 matlab.ui.control.Label dfSpinner matlab.ui.control.Spinner Label_5 matlab.ui.control.Label dtSpinner matlab.ui.control.Spinner dtLabel matlab.ui.control.Label Label 4 matlab.ui.control.Label Label 3 matlab.ui.control.Label a2EditField matlab.ui.control.NumericEditField a2Label matlab.ui.control.Label Label 2 matlab.ui.control.Label matlab.ui.control.NumericEditField a1EditField a1Label matlab.ui.control.Label Label matlab.ui.control.Label mEditField matlab.ui.control.NumericEditField mLabel matlab.ui.control.Label matlab.ui.control.UIAxes UIAxes6 UIAxes5 matlab.ui.control.UIAxes **UIAxes4** matlab.ui.control.UIAxes

```
UIAxes3
                  matlab.ui.control.UIAxes
    UIAxes2
                  matlab.ui.control.UIAxes
    UIAxes
                  matlab.ui.control.UIAxes
  end
  methods (Access = private)
    % Функция генерации ПСП
    function mSequence = generateMSequence(app,registerLength,prim_poly)
       % Генерация М-последовательности с использованием регистра сдвига
       % Инициализация регистра сдвига
       shiftRegister = ones(1, registerLength);
      % Длина М-последовательности
       sequenceLength = 2<sup>registerLength</sup> - 1;
       % Выход М-последовательности
      mSequence = zeros(1, sequenceLength);
          % Найти примитивныый полином (ПрП)
          pos = find(prim poly(1,:)== 1)-1;
                                                   % определить место "1" в
лист ПрП-ај
      % Генерация М-последовательности
      for i = 1:sequenceLength
         % Выход регистра (последний бит)
         mSequence(i) = shiftRegister(end);
         % Обновление состояния регистра сдвига
         feedback = mod(sum(shiftRegister(pos(2:end))), 2); % Пример обратной
связи для 6-битного регистра
         shiftRegister = circshift(shiftRegister, [0, 1]);
         shiftRegister(1) = feedback;
      end
    end
    % Функция АКФ ПСП
    function [ACF,AACF,acf_tab] = ACF_PN(app,PN_11_in,PN_11,num_shift_dt)
      % PN 11 in : принимаемый ПСП
                 : опорный ПСП
      % PN 11
      % Эта функция рассчитывает корреляцинные свойства между
      % принимаемыми ПСП (PN_11_in) и опорной ПСП (PN_11)
      N = length(PN 11);
      PN_11_circshift = [];
      for i = (1-N):1:(N-1)
            % Перегвигается ПСП циклически влева и вправо
         PN_11_circshift = vertcat(PN_11_circshift,circshift(PN_11,i));
       end
       acf tab
                 = PN_11_in.*PN_11_circshift;
       acf_tab(N+num_shift_dt,:) = acf_tab(N,:);
       % АСГ - периодический автокорреляционная функция (ПАКФ) или
```

```
функция автокорреляции (ПФАК)
```

```
ACF = [];
      for i = 1:1:length(acf_tab)
         ACF = [ACF, 1/N*sum(acf_tab(i,:))];
      end
       switch app.DropDown_2.Value
         case '6. (M\Pi 1 + M\Pi 1'') \cup M\Pi 1'
           PN 11 shift = circshift(PN 11,app.dtSpinner.Value,2);
           AACF1 = 1/N * xcorr(PN_11_in,PN_11);
           AACF2 = 1/N * xcorr(PN_{11}_{shift,PN_{11}});
           AACF = AACF1 + AACF2;
         otherwise
           AACF = 1/N * xcorr(PN_11_in,PN_11);
      end
    end
    % Функция чертежа graphic ACF ПСП
    function graphic_ACF(app,ACF,AACF)
      N = pow2(app.mEditField.Value)-1;
      % График
      cla(app.UIAxes,'reset');
      grid(app.UIAxes,"on");
      title(app.UIAxes, {"AKФ ПСП при it{N} = ",N},FontWeight =
"bold",FontSize=14);
      xlabel(app.UIAxes,'\it{\tau}',FontWeight = "bold",FontSize=14);
      ylabel(app.UIAxes,"\it{\chi (\tau,0)}",FontWeight="bold",FontSize=14);
      hold(app.UIAxes,'on');
       app.UIAxes.XLim = [-length(ACF)/2 length(ACF)/2];
      switch app.DropDown_3.Value
         case '\Pi A K \Phi (\Pi B K \Phi)'
           plot(app.UIAxes,-size(ACF,2)*1/2+1/2:1:size(ACF,2)*1/2, ACF,
'LineWidth', 1);
           app.UIAxes.YLim = [(min(ACF)-0.02) 1.1*max(ACF)];
           switch app.DropDown_2.Value
              case '4. (MII1 xor MII2) \cup (MII1 xor MII2)'
                legend(app.UIAxes, {'ΠΒΚΦ'},'Location', 'best');
              otherwise
                legend(app.UIAxes, {'ΠΑΚΦ'},'Location', 'best');
           end
         case 'A\PiAK\Phi (A\PiBK\Phi)'
           plot(app.UIAxes,-size(AACF,2)*1/2+1/2:1:size(AACF,2)*1/2, AACF,
'LineWidth', 1);
           app.UIAxes.YLim = [(min(AACF)-0.02) 1.01*max(AACF)];
           switch app.DropDown_2.Value
              case '4. (MII xor MII2) \cup (MII xor MII2)'
                legend(app.UIAxes, {'AΠΒΚΦ'}, 'Location', 'best');
```

```
otherwise
             legend(app.UIAxes, {'AΠAKΦ'}, 'Location', 'best');
        end
     otherwise
        uialert(app.UIFigure, {'Ошибка'}, 'Error', 'Icon', 'error');
   end
end
% Функция вычисления сечений по частоте при временном задержке
function y = FN_f(app, PN_{11,acf_tab,num_tau,num_shift_dt,num_shift_df)
N = length(PN_{11});
k = (-N):0.1:N;
switch app.DropDown_2.Value
   case '3. M∏1 ∪ M∏2'
     b = acf_tab(N+num_tau,:);
     a = (PN \ 11.*b);
     s = 0;
     for j = 1:1:N
        s = s + a(j) \cos((j-1) 2 p_i k/N);
     end
     y = (1/N)^* (sin(pi.*k/N)./(pi.*k/N)).*s;
     y = y + circshift(y, 10*num_shift_df, 2);
   otherwise
     if num_tau == 0
        y = abs(sin(pi.*k)./(pi.*k));
     elseif num_tau == num_shift_dt
        y = abs(sin(pi.*k)./(pi.*k));
        y = circshift(y,10*num_shift_df,2);
     else
        b = acf_tab(N+num_tau,:);
        a = (PN_11.*b);
        s = 0;
       for j = 1:1:N
          s = s + a(j) \cos((j-1) + 2 \sin(k/N));
       end
        y = (1/N)^* (\sin(pi.*k/N)./(pi.*k/N)).*s;
        y = y + circshift(y, 10*num_shift_df, 2);
     end
end
   hold(app.UIAxes2,'on');
   plot(app.UIAxes2,k, y);
   app.UIAxes2.XLim = [-N N];
   if num_tau == 0
     app.UIAxes2.YLim = [min(y)(1)];
   elseif num_tau == num_shift_dt
     app.UIAxes2.YLim = [min(y)(1)];
```

```
else
     app.UIAxes2.YLim = [min(y) max(y)];
   end
end
% Функция вычисления Дейст.часть ДАКФ
function y_result = DRAW_REFN(app,acf_tab, N, i, k)
   y_result = zeros(length(k),length(i));
   % Найти исходный PN в acf_tab
   temp = ones(1,N);
   [~, position_PN] = ismember(temp, acf_tab, 'rows');
   % Сдвиг по частоте
   for id i = 1:1:length(i)
     if (id_i == position_PN)
       for idk = 1:1:length(k)
          y_result(idk,id_i) =(sin(pi*k(idk))/(pi*k(idk)));
       end
     else
       for idk = 1:1:length(k)
          s = sum(acf_tab(id_i, :) .* cos((0:N-1) * 2 * pi * k(idk) / N));
          y_result(idk,id_i) = (1/N)* (sin(pi*k(idk)/N)/(pi*k(idk)/N))*s;
       end
     end
   end
end
% Функция вычисления Мним.часть ДАКФ
function y_result = DRAW_IMFN(app,acf_tab, N, i, k)
   y_result = zeros(length(k),length(i));
   % Найти исходный PN в acf_tab
   temp = ones(1,N):
   [~, position_PN] = ismember(temp, acf_tab, 'rows');
   % Сдвиг по частоте
    k_shift = circshift(k,10*num_shift_df, 2);
   for id i = 1:1:length(i)
     if (id_i == position_PN)
       for idk = 1:1:length(k)
         y_result(idk,id_i) = 0;
       end
     else
       for idk = 1:1:length(k)
          s = 0:
          for j = 1:1:N
             s = s + acf_tab(id_i,j).*sin((j-1)*2*pi*k(idk)/N);
          end
```

%

```
y_result(idk,id_i) = (1/N)* (sin(pi*k(idk)/N)/(pi*k(idk)/N))*s;
```

```
end
                         end
                  end
           end
           % Функция чертежа ДАКФ ПСП
           function graphic_DAKF(app,y_re,y_im,y_modul)
                   N = pow2(app.mEditField.Value)-1;
                   % Действительная часть ДАКФ
                    % График
                               cla(app.UIAxes3,'reset');
                               grid(app.UIAxes3,"on");
                               view(app.UIAxes3, 3);
                               title(app.UIAxes3,"Действительная часть ДАКФ при N = ", N
,FontWeight = "bold",FontAngle = 'italic');
                               xlabel(app.UIAxes3,'\tau/T5',FontSize=18,FontWeight = "bold",FontAngle
= 'italic');
ylabel(app.UIAxes3,"\it{\DeltafNT3}",FontSize=18,FontWeight="bold",FontAngle =
'italic');
zlabel(app.UIAxes3,"\it{Re(\chi(\tau,\Deltaf))}",FontSize=18,FontWeight="bold",Font
Angle = 'italic');
                               colormap(app.UIAxes3, "jet");
                               hold(app.UIAxes3, 'on');
                               L_y_re = size(y_re,1);
                               W_y_re = size(y_re,2);
                               [ii_re,kk_re] = meshgrid(-W_y_re^{*1/2}+1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:1:W_y_re^{*1/2},-1/2:V_y_re^{*1/2},-1/2:V_y_re^{*1/2},-1/2:V_y_re^{*1/2},-1/2:V_y_re^{*1/
L_y_re*1/2+1/2:1:L_y_re*1/2);
                               mesh(app.UIAxes3, ii_re, kk_re, y_re);
                   % end
                   % Мнимая часть ДАКФ
                            % График
                               cla(app.UIAxes4,'reset');
                               grid(app.UIAxes4,"on");
                               view(app.UIAxes4, 3);
                               title(app.UIAxes4,"Мнимая часть ДАКФ при N = ", N, FontWeight =
"bold"):
                               xlabel(app.UIAxes4,'\tau/T<sub>9</sub>',FontSize=18,FontWeight = "bold",FontAngle
= 'italic');
ylabel(app.UIAxes4,"\it{\DeltafNT3}",FontSize=18,FontWeight="bold",FontAngle =
'italic');
```

zlabel(app.UIAxes4,"\it{Im(\chi(\tau,\Deltaf))}",FontSize=18,FontWeight="bold",Font Angle = 'italic');

```
colormap(app.UIAxes4, "jet");
           hold(app.UIAxes4, 'on');
           L_y_{im} = size(y_{im}, 1);
            W_y_{im} = size(y_{im},2);
            [ii_im,kk_im] = meshgrid(-W_y_im*1/2+1/2:1:W_y_im*1/2,-
L_y_im*1/2+1/2:1:L_y_im*1/2);
            mesh(app.UIAxes4, ii_im, kk_im, y_im);
       % end
       % Модуль ДАКФ
          % График
            cla(app.UIAxes5,'reset');
            grid(app.UIAxes5,"on");
            view(app.UIAxes5, 3);
            title(app.UIAxes5,"Модуль ДАКФ при N = ", N, FontWeight = "bold");
            xlabel(app.UIAxes5,'\tau/T5',FontSize=18,FontWeight = "bold",FontAngle
= 'italic');
```

```
ylabel(app.UIAxes5,"\it{\DeltafNT3}",FontSize=18,FontWeight="bold",FontAngle = 'italic');
```

```
zlabel(app.UIAxes5,"\it{|\chi(\tau,\Deltaf)|}",FontSize=18,FontWeight="bold",FontAng
le = 'italic');
           colormap(app.UIAxes5, "jet");
           hold(app.UIAxes5, 'on');
           L_y_modul = size(y_modul, 1);
           W_y modul = size(y modul, 2);
           [ii_modul,kk_modul] = meshgrid(-
W_y_modul*1/2+1/2:1:W_y_modul*1/2,-L_y_modul*1/2+1/2:1:L_y_modul*1/2);
           mesh(app.UIAxes5, ii_modul, kk_modul, y_modul);
       % end
    end
    % Фунция симулиции ШПС на основе ПСП
    function PN_simulation(app,PN_11)
       N = length(PN 11):
       nb = 100; % Digital signal per bit
       PN = [];
       for i = 1:1:N
         sig = PN_11(i).*ones(1,nb);
         PN = [PN sig];
       end
       % График
       cla(app.UIAxes6,'reset');
       grid(app.UIAxes6,"on");
       %xlabel(app.UIAxes6,'t(c)',FontWeight = "bold",FontSize=14);
       %ylabel(app.UIAxes6,'A(B)',FontWeight = "bold",FontSize=14);
```

title(app.UIAxes6, "ПСП",FontWeight = "bold",FontSize=14); Tb = 0.0001; %Data rate = 1MHz i.e., bit period (second) nb = 100; t1=Tb/nb:Tb/nb:nb*length(PN_11)*(Tb/nb); % Time period hold(app.UIAxes6, 'on'); plot(app.UIAxes6,t1,PN, LineWidth=2); axis(app.UIAxes6,[0 Tb*length(PN_11) (min(PN)-0.5) (max(PN)+0.5)]); end end

% Callbacks that handle component events methods (Access = private)

% Code that executes after component creation function startupFcn(app)

```
% Button pushed function: ACF_
    function ACF_Pushed(app, event)
      % Подготовка данных
      N = pow2(app.mEditField.Value)-1;
      num_shift_dt = app.dtSpinner.Value;
      cla(app.UIAxes,'reset');
      grid(app.UIAxes,"on");
      title(app.UIAxes, {"АКФ ПСП при N =",N},FontWeight =
"bold",FontSize=14);
      xlabel(app.UIAxes,'\tau',FontWeight = "bold",FontSize=14);
      ylabel(app.UIAxes,"\chi (\tau,0)",FontWeight="bold",FontSize=14);
      % Чтение входных ПСП
      % Подготовка Данных ПСП
      %===== МП1 ====
      % Загружать МП1 из файла PN_11_sig1.txt
      filePath sig1 = fullfile(pwd,'PN 11 sig1.txt');
      if exist(filePath_sig1, 'file') == 2
        % Если файл наден, прочитать данные в loadedData
        loadedData = load(filePath_sig1);
        % Матрица доступа из считанных данных
        PN_11_sig1 = loadedData;
      else
        disp('File not found.');
      end
      %===== МП2 =====
```

```
filePath_sig2 = fullfile(pwd,'PN_11_sig2.txt');
```

```
if exist(filePath_sig2, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath_sig2);
  % Матрица доступа из считанных данных
  PN_11_sig2 = loadedData;
  disp('File not found.');
%====== MП1" - сдвигнутый MП1 =======
filePath sig1 shift = fullfile(pwd, 'PN 11 sig1 shift.txt');
if exist(filePath_sig1_shift, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath sig1 shift);
  % Матрица доступа из считанных данных
  PN_11_sig1_shift = loadedData;
  disp('File not found.');
filePath_PN1_xor_PN2 = fullfile(pwd,'PN1_xor_PN2.txt');
if exist(filePath_PN1_xor_PN2, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath_PN1_xor_PN2);
  % Матрица доступа из считанных данных
```

```
PN1_xor_PN2 = loadedData;
```

else

else

end

else

end

```
disp('File not found.');
```

```
%===== Сумма МП1 + МП2 =======
filePath_sum_PN1_PN2 = fullfile(pwd,'sum_PN1_PN2.txt');
if exist(filePath sum PN1 PN2, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath sum PN1 PN2);
  % Матрица доступа из считанных данных
  sum_PN1_PN2 = loadedData;
else
  disp('File not found.');
end
```

```
%====== Сумма МП1 + МП1" =======
filePath_sum_PN1_PN1_shift = fullfile(pwd,'sum_PN1_PN1_shift.txt');
if exist(filePath_sum_PN1_PN1_shift, 'file') == 2
```

% Если файл наден, прочитать данные в loadedData loadedData = load(filePath_sum_PN1_PN1_shift); % Матрица доступа из считанных данных sum_PN1_PN1_shift = loadedData; else disp('File not found.'); end %===== График АКФ ====== switch app.DropDown_2.Value case '1. M∏1 ∪ M∏1' [ACF sig1,AACF PN sig1,acf tab sig1] = app.ACF_PN(PN_11_sig1,PN_11_sig1,0); writematrix(acf_tab_sig1, 'acf_tab_sig1.txt'); app.graphic_ACF(ACF_sig1,AACF_PN_sig1); case '2. M∏2 ∪ M∏2' [ACF_sig2,AACF_PN_sig2,acf_tab_sig2] = app.ACF PN(PN 11 sig2,PN 11 sig2,0); writematrix(acf_tab_sig2, 'acf_tab_sig2.txt'); app.graphic_ACF(ACF_sig2,AACF_PN_sig2); case '3. M∏1 ∪ M∏2' [ACF_PN1_PN2,AACF_PN1_PN2,acf_tab_PN1_PN2] = app.ACF_PN(PN_11_sig1,PN_11_sig2,0); writematrix(acf_tab_PN1_PN2, 'acf_tab_PN1_PN2.txt'); app.graphic ACF(ACF PN1 PN2,AACF PN1 PN2); case '4. (MII1 xor MII2) \cup (MII1 xor MII2)' [ACF PN1 xor PN2, AACF PN1 xor PN2, acf tab PN1 xor PN2] = app.ACF_PN(PN1_xor_PN2,PN1_xor_PN2,0); writematrix(acf tab PN1 xor PN2, 'acf tab PN1 xor PN2.txt'); app.graphic_ACF(ACF_PN1_xor_PN2,AACF_PN1_xor_PN2); case '5. (MII1 + MII2) \cup MII1' [ACF_sum_PN1_PN2,AACF_sum_PN1_PN2,acf_tab_sum_PN1_PN2] = app.ACF PN(sum PN1 PN2.PN 11 sig1.0); writematrix(acf_tab_sum_PN1_PN2, 'acf_tab_sum_PN1_PN2.txt'); app.graphic ACF(ACF_sum_PN1_PN2,AACF_sum_PN1_PN2); case '6. $(M\Pi 1 + M\Pi 1'') \cup M\Pi 1'$ [ACF_sum_PN1_PN1_shift,AACF_sum_PN1_PN1_shift,acf_tab_sum_PN1_PN1_shift]] = app.ACF_PN(PN_11_sig1,PN_11_sig1,num_shift_dt); writematrix(acf_tab_sum_PN1_PN1_shift, 'acf_tab_sum_PN1_PN1_shift.txt'); app.graphic_ACF(ACF_sum_PN1_PN1_shift,AACF_sum_PN1_PN1_shift); otherwise uialert(app.UIFigure, {'Ошибка'}, 'Error', 'Icon', 'error');

```
% Button pushed function: PN_
    function PN_Pushed(app, event)
       str_a1 = num2str(app.a1EditField.Value);
      a1 = arrayfun(@str2double,str_a1);
      str_a2 = num2str(app.a2EditField.Value);
      a2 = arrayfun(@str2double,str_a2);
      PN1 = app.generateMSequence(app.mEditField.Value,a1);
      PN_{11}_{sig1}(PN1 == 0) = 1; PN_{11}_{sig1}(PN1 == 1) = -1;
      writematrix(PN_11_sig1, 'PN_11_sig1.txt');
                                                     % Записать МП1 в
PN_11_sig1.txt
      PN2 = app.generateMSequence(app.mEditField.Value,a2);
      PN_{11}sig2(PN2 == 0) = 1; PN_{11}sig2(PN2 == 1) = -1;
      writematrix(PN_11_sig2, 'PN_11_sig2.txt');
                                                    % Записать МП2 в
PN 11 sig2.txt
      PN_11_shift = circshift(PN_11_sig1,app.dtSpinner.Value,2);
      writematrix(PN 11 shift, 'PN 11 sig1 shift.txt');
                                                          % Записть
сдвигнутый МП1 в PN 11 sig1 shift.txt
      PN1\_xor\_PN2\_01 = bitxor(PN1,PN2);
      PN1_xor_PN2(PN1_xor_PN2_01 == 0) = 1; PN1_xor_PN2(PN1_xor_PN2_01
== 1) = -1;
      writematrix(PN1 xor PN2, 'PN1 xor PN2.txt'); % Записать код Голда
(МП1 хог МП2) в PN1 хог PN2.txt
       sum_PN1_PN2 = PN_11_sig1 + PN_11_sig2;
       writematrix(sum_PN1_PN2, 'sum_PN1_PN2.txt');
                                                           % Записать сумму
МП1 и МП2 в sum_PN1_PN2.txt
      sum_PN1_PN1_shift = PN_11_sig1 + PN_11_shift;
      writematrix(sum PN1 PN1 shift, 'sum PN1 PN1 shift.txt');
                                                                     % Записать
сумму МП1 и сдвигнутой МП1 в sum PN1 PN1 shift.txt
      if (app.a2EditField.Value == 0)
         uialert(app.UIFigure, {'Ошибка','Вводите a2'}, 'Error', 'Icon', 'error');
      end
       switch app.DropDown.Value
         case 'MП1'
           % Simulation PN_11_sig1
           app.PN_simulation(PN_11_sig1);
         case 'MII2'
           % Simulation PN_11_sig2
```

```
app.PN_simulation(PN_11_sig2);
         case 'MII1'''
           % Simulation PN_11_sig1_shift
           app.PN_simulation(PN_11_shift);
         case 'MII1 xor MII2'
           % Simulation code_Gold = PN1_xor_PN2
           app.PN_simulation(PN1_xor_PN2);
         case 'M\Pi1 + M\Pi2'
           % Simulation M\Pi 1 + M\Pi 2
           app.PN_simulation(sum_PN1_PN2);
         case 'MП1 + MП1'''
           % Simulation M\Pi 1 + M\Pi 1"
           app.PN_simulation(sum_PN1_PN1_shift);
         otherwise
           uialert(app.UIFigure, {'Ошибка'}, 'Error', 'Icon', 'error');
      end
    end
    % Button pushed function: f_cross_section_
    function f_cross_section_Pushed(app, event)
      num tau = app.zSpinner.Value;
                                       % Сечение ДАФК по частоте при tau
кратном Тэ:
      num shift dt = app.dtSpinner.Value;
                                             % Номкр сдвига по времени
      num shift df = app.dfSpinner.Value;
                                             % номер сдвига по частоте
      % График
      cla(app.UIAxes2,'reset');
       grid(app.UIAxes2,"on");
       graphTitle = sprintf('Сечение по частоте \PhiH при \\tau = %d Tэ',num tau);
      title(app.UIAxes2,graphTitle,FontWeight = "bold",FontSize=14);
       xlabel(app.UIAxes2,'\it{\DeltafNT3}',FontWeight = "bold",FontSize=14);
       switch num tau
         case '0'
           vlabel(app.UIAxes2,"|\chi(0,\Deltaf)|",FontWeight="bold",FontSize=14);
         case '4'
           ylabel(app.UIAxes2,"|\chi(4,\Deltaf)|",FontWeight="bold",FontSize=14);
         case '9'
           vlabel(app.UIAxes2,"|\chi(9,\Deltaf)|",FontWeight="bold",FontSize=14);
         otherwise
           ylabel(app.UIAxes2,"|\it{\chi
(\tau,\Deltaf)}|",FontWeight="bold",FontSize=14);
      end
       % Подготовка Данных ПСП
       %====== МП1 =====
       % Загружать МП1 из файла PN_11_sig1.txt
```

```
filePath_sig1 = fullfile(pwd,'PN_11_sig1.txt');
if exist(filePath_sig1, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath_sig1);
  % Матрица доступа из считанных данных
  PN_11_sig1 = loadedData;
else
  disp('File not found.');
end
%===== МП2 =====
filePath_sig2 = fullfile(pwd,'PN_11_sig2.txt');
if exist(filePath_sig2, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath sig2);
  % Матрица доступа из считанных данных
  PN_11_sig2 = loadedData;
else
  disp('File not found.');
end
%====== MП1" - сдвигнутый MП1 ======
filePath sig1 shift = fullfile(pwd, 'PN 11 sig1 shift.txt');
if exist(filePath_sig1_shift, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath_sig1_shift);
  % Матрица доступа из считанных данных
  PN_11_sig1_shift = loadedData;
else
  disp('File not found.');
end
\%====== CODE GOLD = MII1 xor MII2 =========
filePath_PN1_xor_PN2 = fullfile(pwd,'PN1_xor_PN2.txt');
if exist(filePath PN1 xor PN2, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath PN1 xor PN2);
  % Матрица доступа из считанных данных
  PN1_xor_PN2 = loadedData;
else
  disp('File not found.');
end
%====== Сумма МП1 + МП2 =======
```

```
filePath_sum_PN1_PN2 = fullfile(pwd,'sum_PN1_PN2.txt');
if exist(filePath_sum_PN1_PN2, 'file') == 2
```

```
% Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath_sum_PN1_PN2);
  % Матрица доступа из считанных данных
  sum_PN1_PN2 = loadedData;
else
  disp('File not found.');
end
%====== Сумма МП1 + МП1" =======
filePath_sum_PN1_PN1_shift = fullfile(pwd,'sum_PN1_PN1_shift.txt');
if exist(filePath sum PN1 PN1 shift, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath sum PN1 PN1 shift);
  % Матрица доступа из считанных данных
  sum_PN1_PN1_shift = loadedData;
else
  disp('File not found.');
end
% Чтение данных acf_tab
%====== MП1 =====
% Загружать acf_tab_sig1 из файла acf_tab_sig1.txt
filePath acf_tab_sig1 = fullfile(pwd,'acf_tab_sig1.txt');
if exist(filePath_acf_tab_sig1, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath_acf_tab_sig1);
  % Матрица доступа из считанных данных
  acf_tab_sig1 = loadedData;
else
  disp('File not found.');
end
%====== МП2 =====
% Загружать acf tab sig2 из файла acf tab sig2.txt
filePath acf tab sig2 = fullfile(pwd, 'acf_tab_sig2.txt');
if exist(filePath acf tab sig2, 'file') == 2
  % Если файл наден, прочитать данные в loadedData
  loadedData = load(filePath acf tab sig2);
  % Матрица доступа из считанных данных
  acf_tab_sig2 = loadedData;
else
  disp('File not found.');
end
%====== МП1 U МП2 ======
% Загружать acf tab PN1 PN2 из файла acf tab PN1 PN2.txt
filePath acf_tab_PN1_PN2 = fullfile(pwd, 'acf_tab_PN1_PN2.txt');
if exist(filePath acf tab PN1 PN2, 'file') == 2
```

```
% Если файл наден, прочитать данные в loadedData
         loadedData = load(filePath_acf_tab_PN1_PN2);
         % Матрица доступа из считанных данных
        acf_tab_PN1_PN2 = loadedData;
      else
        disp('File not found.');
      end
      %====== CODE GOLD = MП1 хог MП2 ======
      % Загружать acf tab PN1 xor PN2 из файла acf tab PN1 PN2.txt
      filePath_acf_tab_PN1_xor_PN2 = fullfile(pwd,'acf_tab_PN1_xor_PN2.txt');
      if exist(filePath_acf_tab_PN1_xor_PN2, 'file') == 2
         % Если файл наден, прочитать данные в loadedData
         loadedData = load(filePath acf tab PN1 xor PN2);
         % Матрица доступа из считанных данных
         acf_tab_PN1_xor_PN2 = loadedData;
      else
        disp('File not found.');
      end
      %===== Сумма МП1 + МП2 ======
      % Загружать acf tab sum PN1 PN2 из файла acf tab sum PN1 PN2.txt
      filePath_acf_tab_sum_PN1_PN2 = fullfile(pwd, 'acf_tab_sum_PN1_PN2.txt');
      if exist(filePath_acf_tab_sum_PN1_PN2, 'file') == 2
         % Если файл наден, прочитать данные в loadedData
         loadedData = load(filePath_acf_tab_sum_PN1_PN2);
         % Матрица доступа из считанных данных
         acf_tab_sum_PN1_PN2 = loadedData;
      else
         disp('File not found.');
      end
            ===== Сумма МП1 + МП1" ======
      %==
      % Загружать acf tab sum PN1 PN1 shift из файла
acf tab sum PN1 PN1 shift.txt
      filePath acf_tab_sum_PN1_PN1_shift =
fullfile(pwd,'acf tab sum PN1 PN1 shift.txt');
      if exist(filePath_acf_tab_sum_PN1_PN1_shift, 'file') == 2
         % Если файл наден, прочитать данные в loadedData
         loadedData = load(filePath acf_tab_sum_PN1_PN1_shift);
         % Матрица доступа из считанных данных
         acf_tab_sum_PN1_PN1_shift = loadedData;
      else
         disp('File not found.');
      end
      % Графики сечений ДАКФ по частоте
      switch app.DropDown 2.Value
         case '1. M∏1 ∪ M∏1'
```

```
FNf_PN1 = app.FN_f(PN_11_sig1,acf_tab_sig1,num_tau,0,0);
         case '2. M∏2 ∪ M∏2'
           FNf_PN2 = app.FN_f(PN_11_sig2,acf_tab_sig2,num_tau,0,0);
         case '3. M∏1 ∪ M∏2'
           FNf_PN1_PN2 = app.FN_f(PN_11_sig2,acf_tab_PN1_PN2,num_tau,0,0);
         case '4. (MIT1 xor MIT2) \cup (MIT1 xor MIT2)'
           FNf_PN1_xor_PN2 =
app.FN_f(PN1_xor_PN2,acf_tab_PN1_xor_PN2,num_tau,0,0);
         case '5. (MII1 + MII2) \cup MII1'
           FNf_sum_PN1_PN2 =
app.FN_f(PN_11_sig1,acf_tab_sum_PN1_PN2,num_tau,0,0);
         case '6. (M\Pi 1 + M\Pi 1'') \cup M\Pi 1'
           FNf sum PN1 PN1 shift =
app.FN_f(PN_11_sig1,acf_tab_sum_PN1_PN1_shift,num_tau,num_shift_dt,num_shift
_df);
         otherwise
           uialert(app.UIFigure, {'Ошибка', 'Выберите (МП1, МП2, 2МП, Код
Голда'}, 'Error', 'Icon', 'error');
       end
    end
    % Button pushed function: DAKF
    function DAKF Pushed(app, event)
       % Подготовка данных
       N = pow2(app.mEditField.Value)-1;
       i = -(N-1):1:(N-1); % i = tau/T_{3}
       k = -N:0.1:N;
                         % f = k/Ts
       num_shift_df = app.dfSpinner.Value;
       num_shift_dt = app.dtSpinner.Value;
       % Подготовка Данных ПСП
        %===== MП1 ====
       % Загружать МП1 из файла PN_11_sig1.txt
       filePath_sig1 = fullfile(pwd,'PN_11_sig1.txt');
       if exist(filePath_sig1, 'file') == 2
         % Если файл наден, прочитать данные в loadedData
         loadedData = load(filePath sig1);
         % Матрица доступа из считанных данных
         PN 11 sig1 = loadedData;
       else
         disp('File not found.');
       end
      % Загружать acf tab sig1 из файла acf tab sig1.txt
       filePath acf_tab_sig1 = fullfile(pwd,'acf_tab_sig1.txt');
       if exist(filePath_acf_tab_sig1, 'file') == 2
         % Если файл наден, прочитать данные в loadedData
```

loadedData = load(filePath_acf_tab_sig1); % Матрица доступа из считанных данных acf_tab_sig1 = loadedData; else disp('File not found.'); end %====== МП2 ===== % Загружать acf tab sig2 из файла acf tab sig2.txt filePath acf tab sig2 = fullfile(pwd, 'acf_tab_sig2.txt'); if exist(filePath_acf_tab_sig2, 'file') == 2 % Если файл наден, прочитать данные в loadedData loadedData = load(filePath_acf_tab_sig2); % Матрица доступа из считанных данных $acf_tab_sig2 = loadedData;$ else disp('File not found.'); end %====== МП1 ∪ МП2 ====== % Загружать acf tab PN1 PN2 из файла acf tab PN1 PN2.txt filePath_acf_tab_PN1_PN2 = fullfile(pwd, 'acf_tab_PN1_PN2.txt'); if exist(filePath_acf_tab_PN1_PN2, 'file') == 2 % Если файл наден, прочитать данные в loadedData loadedData = load(filePath_acf_tab_PN1_PN2); % Матрица доступа из считанных данных acf_tab_PN1_PN2 = loadedData; else disp('File not found.'); end % Загружать acf tab PN1 xor PN2 из файла acf tab PN1 PN2.txt filePath_acf_tab_PN1_xor_PN2 = fullfile(pwd, 'acf_tab_PN1_xor_PN2.txt'); if exist(filePath_acf_tab_PN1_xor_PN2, 'file') == 2 % Если файл наден, прочитать данные в loadedData loadedData = load(filePath acf tab PN1 xor PN2); % Матрица доступа из считанных данных acf_tab_PN1_xor_PN2 = loadedData; else disp('File not found.'); end %===== Сумма МП1 + МП2 ======= % Загружать acf tab sum PN1 PN2 из файла acf tab sum PN1 PN2.txt filePath acf_tab_sum_PN1_PN2 = fullfile(pwd,'acf_tab_sum_PN1_PN2.txt'); if exist(filePath_acf_tab_sum_PN1_PN2, 'file') == 2 % Если файл наден, прочитать данные в loadedData loadedData = load(filePath_acf_tab_sum_PN1_PN2);
```
% Матрица доступа из считанных данных
        acf_tab_sum_PN1_PN2 = loadedData;
      else
        disp('File not found.');
      end
      %====== Сумма МП1 + МП1" =======
      % Загружать acf tab sum PN1 PN1 shift из файла
acf_tab_sum_PN1_PN1_shift.txt
      filePath acf tab sum PN1 PN1 shift =
fullfile(pwd,'acf_tab_sum_PN1_PN1_shift.txt');
      if exist(filePath acf tab sum PN1 PN1 shift, 'file') = 2
        % Если файл наден, прочитать данные в loadedData
        loadedData = load(filePath acf tab sum PN1 PN1 shift);
        % Матрица доступа из считанных данных
        acf tab sum PN1 PN1 shift = loadedData;
      else
        disp('File not found.');
      end
      % ====== ГРАФИКИ =======
      switch app.DropDown_2.Value
        case '1. M∏1 ∪ M∏1'
         % Вычисление Действительную часть ДАКФ
          y re_PN1 = app.DRAW_REFN(acf_tab_sig1,N,i,k);
          y_im_PN1 = app.DRAW_IMFN(acf_tab_sig1,N,i,k);
          y_modul_PN1 = sqrt((y_re_PN1).^2+(y_im_PN1).^2);
          app.graphic_DAKF(y_re_PN1,y_im_PN1,y_modul_PN1);
         % end
        case '2. M∏2 ∪ M∏2'
         % Вычисление Действительную часть ДАКФ
          y re PN2 = app.DRAW REFN(acf tab sig2, N, i, k);
          y im PN2 = app.DRAW_IMFN(acf_tab_sig2,N,i,k);
          y_modul_PN2 = sqrt((y_re_PN2).^2+(y_im_PN2).^2);
          app.graphic_DAKF(y_re_PN2,y_im_PN2,y_modul_PN2);
         % end
        case '3. M∏1 ∪ M∏2'
         % Вычисление Действительную часть ДАКФ
          y_re_PN1_PN2 = app.DRAW_REFN(acf_tab_PN1_PN2,N,i,k);
          y_im_PN1_PN2 = app.DRAW_IMFN(acf_tab_PN1_PN2,N,i,k);
          y_modul_PN1_PN2 = sqrt((y_re_PN1_PN2).^2+(y_im_PN1_PN2).^2);
         app.graphic_DAKF(y_re_PN1_PN2,y_im_PN1_PN2,y_modul_PN1_PN2);
         % end
        case '4. (MII1 xor MII2) \cup (MII1 xor MII2)'
         % Вычисление Действительную часть ДАКФ
          y_re_PN1_xor_PN2 = app.DRAW_REFN(acf_tab_PN1_xor_PN2,N,i,k);
          y_im_PN1_xor_PN2 = app.DRAW_IMFN(acf_tab_PN1_xor_PN2,N,i,k);
```

y_modul_PN1_xor_PN2 =
sqrt((y_re_PN1_xor_PN2).^2+(y_im_PN1_xor_PN2).^2);

```
app.graphic_DAKF(y_re_PN1_xor_PN2,y_im_PN1_xor_PN2,y_modul_PN1_xor_PN2);
```

```
% end
case '5. (МП1 + МП2) ∪ МП1'
% Вычисление Действительную часть ДАКФ
y_re_PN1 = app.DRAW_REFN(acf_tab_sig1,N,i,k);
y_im_PN1 = app.DRAW_IMFN(acf_tab_sig1,N,i,k);
y_re_PN2 = app.DRAW_REFN(acf_tab_PN1_PN2,N,i,k);
y_im_PN2 = app.DRAW_IMFN(acf_tab_PN1_PN2,N,i,k);
y_re_sum_PN1_PN2 = y_re_PN1 + y_re_PN2;
y_im_sum_PN1_PN2 = y_im_PN1 + y_im_PN2;
y_modul_sum_PN1_PN2 =
sqrt((y_re_sum_PN1_PN2).^2+(y_im_sum_PN1_PN2).^2);
```

app.graphic_DAKF(y_re_sum_PN1_PN2,y_im_sum_PN1_PN2,y_modul_sum_PN1_P
N2);

% end

case '6. (M∏1 + M∏1") ∪ M∏1' % Вычисления acf tab PN1 shift PN1 (МП1" ∪ МП1) $[\sim,\sim,\operatorname{acf_tab_sig1}] = \operatorname{app.ACF_PN(PN_11_sig1,PN_11_sig1,0)};$ acf tab PN1 shift PN1 = circshift(acf tab sig1,num shift dt,1); % Вычисление Действительную часть ДАКФ y re_PN1 = app.DRAW_REFN(acf_tab_sig1,N,i,k); y_im_PN1 = app.DRAW_IMFN(acf_tab_sig1,N,i,k); y re_PN1_shift = app.DRAW_REFN(acf_tab_PN1_shift_PN1,N,i,k); y_re_PN1_shift = circshift(y_re_PN1_shift,10*num_shift_df,1); y im PN1_shift = app.DRAW_IMFN(acf_tab_PN1_shift_PN1,N,i,k); y_im_PN1_shift = circshift(y_im_PN1_shift,10*num_shift_df,1); y re_sum_PN1_PN1_shift = y_re_PN1 + y_re_PN1_shift; y_im_sum_PN1_PN1_shift = y_im_PN1 + y_im_PN1_shift; v modul sum PN1 PN1 shift = sqrt((y_re_sum_PN1_PN1_shift).^2+(y_im_sum_PN1_PN1_shift).^2); app.graphic_DAKF(y_re_sum_PN1_PN1_shift,y_im_sum_PN1_PN1_shift,y_modul_s um_PN1_PN1_shift); % end otherwise uialert(app.UIFigure, {'Ошибка', 'Выберите (МП1, МП2, 2МП, Код Голда'}, 'Error', 'Icon', 'error'); end

end

% Button pushed function: Reset_ function Reset_Pushed(app, event) cla(app.UIAxes,'reset'); grid(app.UIAxes,"on"); title(app.UIAxes,"АКФ ПСП при N =",FontWeight = "bold",FontSize=14); xlabel(app.UIAxes,\\tau',FontWeight = "bold",FontSize=14); ylabel(app.UIAxes,"\chi (\tau,0)",FontWeight="bold",FontSize=14); cla(app.UIAxes2,'reset'); grid(app.UIAxes2,"on"); graphTitle = sprintf('Сечение по частоте Φ H при \\tau = z Tэ'); title(app.UIAxes2,graphTitle,FontWeight = "bold",FontSize=14); xlabel(app.UIAxes2,'k',FontWeight = "bold",FontSize=14); ylabel(app.UIAxes2,"\chi (\tau,f)",FontWeight="bold",FontSize=14); cla(app.UIAxes3,'reset'); grid(app.UIAxes3,"on"); view(app.UIAxes3, 3); title(app.UIAxes3,"Действительная часть ДАКФ при N = ", FontWeight = "bold"); xlabel(app.UIAxes3,'\tau/Tɔ',FontWeight = "bold"); ylabel(app.UIAxes3,"k",FontWeight="bold"); zlabel(app.UIAxes3,"Re(\chi(\tau,k))",FontWeight="bold"); cla(app.UIAxes4,'reset'); grid(app.UIAxes4,"on"); view(app.UIAxes4, 3); title(app.UIAxes4,"Мнимая часть ДАК Φ при N = ",FontWeight = "bold"); xlabel(app.UIAxes4,'\tau/Tɔ',FontWeight = "bold"); ylabel(app.UIAxes4,"k",FontWeight="bold"); zlabel(app.UIAxes4,"Im(\chi(\tau,f))",FontWeight="bold"); cla(app.UIAxes5,'reset'); grid(app.UIAxes5,"on"); view(app.UIAxes5, 3); title(app.UIAxes5, "Модуль ДАК Φ при N = ", FontWeight = "bold"); xlabel(app.UIAxes5,'\tau/To',FontWeight = "bold"); vlabel(app.UIAxes5,"k",FontWeight="bold"); zlabel(app.UIAxes5,"|\chi(\tau,f)|",FontWeight="bold"); cla(app.UIAxes6,'reset'); grid(app.UIAxes6,"on"); xlabel(app.UIAxes6,'t(c)',FontWeight = "bold",FontSize=14); ylabel(app.UIAxes6,'A(B)',FontWeight = "bold",FontSize=14); title(app.UIAxes6, "ΠCΠ",FontWeight = "bold",FontSize=14); end end

% Component initialization methods (Access = private) % Create UIFigure and components function createComponents(app)

% Create UIFigure and hide until all components are created app.UIFigure = uifigure('Visible', 'off'); app.UIFigure.Position = [100 100 1425 760]; app.UIFigure.Name = 'MATLAB App';

% Create Panel app.Panel = uipanel(app.UIFigure); app.Panel.TitlePosition = 'centertop'; app.Panel.Title = 'Программа вычисления и ислледования ДАКФ ПСП'; app.Panel.BackgroundColor = [1 1 1]; app.Panel.FontName = 'Times New Roman'; app.Panel.FontWeight = 'bold'; app.Panel.FontSize = 18; app.Panel.Position = [1 1 1432 760];

% Create UIAxes app.UIAxes = uiaxes(app.Panel); title(app.UIAxes, 'AKΦ ΠCΠ') xlabel(app.UIAxes, '\tau') ylabel(app.UIAxes, '\chi (\tau,0)') zlabel(app.UIAxes, 'Z') app.UIAxes.XGrid = 'on'; app.UIAxes.YGrid = 'on'; app.UIAxes.Position = [654 491 388 229];

% Create UIAxes2 app.UIAxes2 = uiaxes(app.Panel); title(app.UIAxes2, 'Сечения ДАКФ по частоте') xlabel(app.UIAxes2, 'f') ylabel(app.UIAxes2, 'chi(0,f)') zlabel(app.UIAxes2, 'Z') app.UIAxes2.XGrid = 'on'; app.UIAxes2.YGrid = 'on'; app.UIAxes2.Position = [1067 497 352 229];

% Create UIAxes3 app.UIAxes3 = uiaxes(app.Panel); title(app.UIAxes3, 'Действительная часть ДАКФ') xlabel(app.UIAxes3, '\tau') ylabel(app.UIAxes3, 'f') zlabel(app.UIAxes3, '\chi(\tau,f)') app.UIAxes3.XGrid = 'on'; app.UIAxes3.YGrid = 'on'; app.UIAxes3.ZGrid = 'on'; app.UIAxes3.Position = [9 116 451 363];

% Create UIAxes4 app.UIAxes4 = uiaxes(app.Panel); title(app.UIAxes4, 'Мнимая часть ДАКФ') xlabel(app.UIAxes4, '\tau') ylabel(app.UIAxes4, 'f') zlabel(app.UIAxes4, 'Re(\chi(\tau,f))') app.UIAxes4.XGrid = 'on'; app.UIAxes4.YGrid = 'on'; app.UIAxes4.ZGrid = 'on'; app.UIAxes4.Position = [459 117 473 363];

% Create UIAxes5 app.UIAxes5 = uiaxes(app.Panel); title(app.UIAxes5, 'Модуль ДАКФ') xlabel(app.UIAxes5, '\tau') ylabel(app.UIAxes5, 'f') zlabel(app.UIAxes5, 'f') app.UIAxes5.XGrid = 'on'; app.UIAxes5.YGrid = 'on'; app.UIAxes5.Position = [938 116 490 363];

```
% Create UIAxes6
app.UIAxes6 = uiaxes(app.Panel);
title(app.UIAxes6, 'Входной ПСП')
xlabel(app.UIAxes6, 't(c)')
ylabel(app.UIAxes6, 'A(B)')
zlabel(app.UIAxes6, 'Z')
app.UIAxes6.FontWeight = 'bold';
app.UIAxes6.XLim = [0 100];
app.UIAxes6.YLim = [-1.5 1.5];
app.UIAxes6.YGrid = 'on';
app.UIAxes6.YGrid = 'on';
app.UIAxes6.Position = [119 14 1300 103];
```

% Create InputPanel app.InputPanel = uipanel(app.Panel); app.InputPanel.TitlePosition = 'centertop'; app.InputPanel.Title = 'Input'; app.InputPanel.BackgroundColor = [1 1 1]; app.InputPanel.FontName = 'Times New Roman'; app.InputPanel.FontWeight = 'bold'; app.InputPanel.FontSize = 14; app.InputPanel.Position = [8 479 441 251];

```
% Create mLabel
app.mLabel = uilabel(app.InputPanel);
app.mLabel.HorizontalAlignment = 'right';
app.mLabel.FontSize = 14;
app.mLabel.FontWeight = 'bold';
app.mLabel.Position = [289 194 30 22];
app.mLabel.Text = 'm =';
```

% Create mEditField app.mEditField = uieditfield(app.InputPanel, 'numeric'); app.mEditField.Position = [334 194 100 22];

% Create Label app.Label = uilabel(app.InputPanel); app.Label.HorizontalAlignment = 'center'; app.Label.FontSize = 14; app.Label.Position = [11 194 240 22]; app.Label.Text = 'Степень примитивного многочлена:';

% Create a1Label app.a1Label = uilabel(app.InputPanel); app.a1Label.HorizontalAlignment = 'right'; app.a1Label.FontSize = 14; app.a1Label.FontWeight = 'bold'; app.a1Label.Position = [278 161 25 22]; app.a1Label.Text = 'a1:';

% Create a1EditField app.a1EditField = uieditfield(app.InputPanel, 'numeric'); app.a1EditField.ValueDisplayFormat = '%d'; app.a1EditField.Position = [309 161 125 22];

% Create Label_2 app.Label_2 = uilabel(app.InputPanel); app.Label_2.HorizontalAlignment = 'center'; app.Label_2.FontSize = 14; app.Label_2.Position = [1 160 264 22]; app.Label_2.Text = 'Коэффициенты обратной связи ПСП 1:';

% Create a2Label app.a2Label = uilabel(app.InputPanel); app.a2Label.HorizontalAlignment = 'right'; app.a2Label.FontSize = 14; app.a2Label.FontWeight = 'bold'; app.a2Label.Position = [276 131 25 22]; app.a2Label.Text = 'a2:';

% Create a2EditField app.a2EditField = uieditfield(app.InputPanel, 'numeric'); app.a2EditField.ValueDisplayFormat = '%d'; app.a2EditField.Position = [308 127 126 22];

% Create Label_3 app.Label_3 = uilabel(app.InputPanel); app.Label_3.HorizontalAlignment = 'center'; app.Label_3.FontSize = 14; app.Label_3.Position = [-1 126 264 22]; app.Label_3.Text = 'Коэффициенты обратной связи ПСП 2:';

% Create Label_4 app.Label_4 = uilabel(app.InputPanel); app.Label_4.HorizontalAlignment = 'center'; app.Label_4.FontSize = 14; app.Label_4.Position = [12 97 243 22]; app.Label_4.Text = 'Номер сдвига по времени кратно Тэ';

% Create dtLabel app.dtLabel = uilabel(app.InputPanel); app.dtLabel.HorizontalAlignment = 'center'; app.dtLabel.FontSize = 14; app.dtLabel.FontWeight = 'bold'; app.dtLabel.Position = [293 97 27 22]; app.dtLabel.Text = 'dt :';

% Create dtSpinner app.dtSpinner = uispinner(app.InputPanel); app.dtSpinner.Position = [333 97 100 22];

% Create Label_5 app.Label_5 = uilabel(app.InputPanel); app.Label_5.HorizontalAlignment = 'right'; app.Label_5.FontSize = 14; app.Label_5.FontWeight = 'bold'; app.Label_5.Position = [289 65 27 22]; app.Label_5.Text = 'df :'; % Create dfSpinner app.dfSpinner = uispinner(app.InputPanel); app.dfSpinner.Position = [331 65 100 22];

% Create Label_6 app.Label_6 = uilabel(app.InputPanel); app.Label_6.FontSize = 14; app.Label_6.Position = [62 65 168 22]; app.Label_6.Text = 'Номер сдвига по частоте';

% Create Label_7 app.Label_7 = uilabel(app.InputPanel); app.Label_7.HorizontalAlignment = 'right'; app.Label_7.FontSize = 14; app.Label_7.FontWeight = 'bold'; app.Label_7.Position = [294 29 25 22]; app.Label_7.Text = 'z:';

% Create zSpinner app.zSpinner = uispinner(app.InputPanel); app.zSpinner.Position = [334 29 100 22];

% Create tauLabel app.tauLabel = uilabel(app.InputPanel); app.tauLabel.HorizontalAlignment = 'center'; app.tauLabel.FontSize = 14; app.tauLabel.Position = [37 21 227 34]; app.tauLabel.Text = {'Сечение ДАФК по частоте при tau'; 'кратном Тэ:'};

% Create Panel_2 app.Panel_2 = uipanel(app.Panel); app.Panel_2.TitlePosition = 'centertop'; app.Panel_2.Title = 'Вычисления'; app.Panel_2.BackgroundColor = [1 1 1]; app.Panel_2.FontWeight = 'bold'; app.Panel_2.Position = [456 479 190 250];

% Create ACF_ app.ACF_ = uibutton(app.Panel_2, 'push'); app.ACF_.ButtonPushedFcn = createCallbackFcn(app, @ACF_Pushed, true); app.ACF_.Position = [16 141 162 23]; app.ACF_.Text = 'Корреляционные функции';

% Create f_cross_section_ app.f_cross_section_ = uibutton(app.Panel_2, 'push');

app.f_cross_section_.ButtonPushedFcn = createCallbackFcn(app, @f_cross_section_Pushed, true); app.f_cross_section_.Position = [16 96 162 38]; арр.f cross section .Text = 'Сечения ДАКФ по частоте'; % Create DAKF app.DAKF_ = uibutton(app.Panel_2, 'push'); app.DAKF_.ButtonPushedFcn = createCallbackFcn(app, @DAKF_Pushed, true); app.DAKF_.Position = [41 66 101 23]; app.DAKF .Text = ' $\square AK\Phi$ '; % Create PN app.PN_ = uibutton(app.Panel_2, 'push'); app.PN_.ButtonPushedFcn = createCallbackFcn(app, @PN_Pushed, true); app.PN_.Position = [23 198 150 26]; арр. PN . Text = 'Генерирование $\Pi C\Pi$ '; % Create DropDown_2 app.DropDown_2 = uidropdown(app.Panel_2); app.DropDown 2.Items = {'1. MII \cup MII', '2. MII \cup MII2', '3. MII \cup MΠ2', '4. (MΠ1 xor MΠ2) U (MΠ1 xor MΠ2)', '5. (MΠ1 + MΠ2) U MΠ1', '6. (MΠ1 + MΠ1") ∪ MΠ1'}; app.DropDown_2.Position = [17 35 154 24]; app.DropDown 2.Value = '1. M Π 1 U M Π 1'; % Create Reset app.Reset_ = uibutton(app.Panel_2, 'push'); app.Reset_.ButtonPushedFcn = createCallbackFcn(app, @Reset_Pushed, true); app.Reset .Position = $[46\ 6\ 100\ 23];$ app.Reset_.Text = 'C6poc'; % Create DropDown_3 app.DropDown_3 = uidropdown(app.Panel_2); app.DropDown 3.Items = { $'\Pi AK\Phi (\Pi BK\Phi)', 'A\Pi AK\Phi (A\Pi BK\Phi)'$ }; app.DropDown 3.Position = [33 169 128 22]; app.DropDown 3.Value = ' $\Pi A K \Phi$ ($\Pi B K \Phi$)'; % Create DropDown app.DropDown = uidropdown(app.Panel); app.DropDown.Items = {'MП1', 'MП2', 'MП1''', 'MП1 xor MП2', 'MП1 + MП2', $'M\Pi 1 + M\Pi 1'''$; app.DropDown.Position = [12 54 100 22];app.DropDown.Value = 'M Π 1';

```
% Show the figure after all components are created
app.UIFigure.Visible = 'on';
end
end
```

```
% App creation and deletion methods (Access = public)
```

```
% Construct app
function app = app1
```

% Create UIFigure and components createComponents(app)

% Register the app with App Designer registerApp(app, app.UIFigure)

```
% Execute the startup function
runStartupFcn(app, @startupFcn)
```

```
if nargout == 0
clear app
end
end
```

% Code that executes before app deletion function delete(app)

```
% Delete UIFigure when app is deleted
delete(app.UIFigure)
end
end
```

Акт о внедрении результатов диссертационной работы

AKT

о реализации результатов диссертационной работы Ву Ши Дао на тему: «Обнаружение и синхронизация слабых по мощности периодических шумоподобных сигналов» в учебном процессе МТУСИ

Комиссия в составе:

председателя – д.т.н., профессора, заведующего кафедрой «Радиооборудование и схемотехника» (РОС) МТУСИ Пестрякова А.В.,

членов комиссии: к.т.н., доцента кафедры РОС Уханова Е.В, к.т.н., доцента кафедры РОС Андреева И.Б.

установила, что научные результаты, полученные в кандидатской диссертации Ву Ши Дао, а именно:

 разработанная «Программа для вычисления и исследования статистических характеристик двумерных автокорреляционных функций шумоподобных сигналов» (свидетельство государственной регистрации программы для ЭВМ №2024618362), позволившая обосновать достижимые разрешающую способность по частоте и задержке по времени, а также и точность оценки параметров совокупностей телекоммуникационных сигналов;

 предложенные варианты построения матрицы циркулянтов псевдослучайных Мподобных последовательностей на основе мультипликативных групп расширенных полей Галуа, позволившие обосновать возможность использования алгоритмов быстрых спектральных преобразований для ускоренного обнаружения слабых по мощности периодических шумоподобных сигналов;

 способ расчета эффективности функционирования канала синхронизации с совместно работающими цифровыми устройствами ускоренного обнаружения и аналоговыми схемами слежения за параметрами совокупности слабых по мощности шумоподобных сигналов

используются при чтении лекций и проведении практических занятий согласно рабочей программе дисциплины «Синхронизация и управление в инфокоммуникационных системах» для магистров направления подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи» в соответствии с ее разделами 5.1.1, 5.1.2 и 5.1.4.

Председатель комиссии:

Члены комиссии:

А.В. Пестряков Steeren E.B. YXAHOB И.Б. Андреев

崧

南

密

密

崧 容

密 密

密

宓

密

崧

密 密

密 密

崧

密 密

鹵

密

斑

密

密

鹵

密

密

密

鹵

璨

密

密

密

鹵

密

密

撥

鹵

密

卤

密

密

卤

РОССИЙСКАЯ ФЕДЕРАЦИЯ

RU2024663135

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ ГОСУДАРСТВЕННАЯ РЕГИСТРАЦИЯ ПРОГРАММЫ ДЛЯ ЭВМ

Номер регистрации (свидетельства):	Авто
2024663135	Гор
Дата регистрации: 04.06.2024	By
Номер и дата поступления заявки:	Прав
2024661989 28.05.2024	Op
Дата публикации и номер бюллетеня:	фед
04.06.2024 Бюл. № 6	обр
	обт

Автор(ы): Горгадзе Светлана Феликсовна (RU), Ву Ши Дао (RU) Правообладатель(и): Ордена Трудового Красного Знамени федеральное государственное бюджетное образовательное учреждение высшего образования «Московский технический университет связи и информатики» (RU)

Название программы для ЭВМ:

Программа построения матриц-циркулянтов М-последовательности и кода Голда на основе мультипликативных групп расширенных полей Галуа

Реферат:

Программа предназначена для построения матриц-циркулянтов любой М последовательности (МП) и кода Голда на основе автоморфных мультипликативных групп расширенного поля Галуа и способствует преобразовать их к матрице функций Уолша. Данная программа позволяет упростить алгоритм синхронизации МП и кода Голда, а также снизить вычислительную сложность алгоритма обработки шумоподобных сигналов при работе в усеченном базисе функций Уолша-Адамара. В основе программы лежат математическая модель построения матриц-циркулянтов МП и кода Голда по модулю неприводимого примитивного полинома при различных сопровождающих матриц и длинах. Программа может применяться в области телекоммуникаций, а также при обучении студентов в отраслевых вузах связи и курсах повышения квалификации работников отрасли радиосвязи и радиолокации.

Язык программирования:	MATLAB
Объем программы для ЭВМ:	7 ME